

高密度ポリエチレン管 アクアレックスーN

(AQX-N SDR13.6)

(技術資料)

アクアレックスーN 古河電工

~INDEX~

1. アクアレックス-Nの特徴	•	•	•	•	•	•	2
2. アクアレックス-Nの仕様	•	•	•	•	•	•	3
3. アクアレックス-Nの設計		•	•	•	•	•	5
1. 各部の材料	•	•	•	•	•	•	5
2. 耐内圧設計	•	•	•	•	•	•	5
3. 送水設計	•	•	•	•	•	•	7
4. 配管支持設計	•	•	•	•	•	•	11
4. アクアレックス-Nの各種性	誰	•	•	•	•	•	17
1. 曲げ半径・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		•	• .				17
2. 材料基本物性 •		•					17

アクアレックス - N (AQX - N SDR13.6)

- ・送配水管、産業用配管
- ・「長尺」配管
- ・「最高許容圧力 0.8MPa(at20)以下」の配管
- ・「ISO準拠サイズ」配管

アクアレックスーN

<u>1. アクアレックス - Nの特徴</u>

アクアレックス - NはISO準拠サイズの高密度ポリエチレン管 (黒色)の送配水管です。また、長尺化により工期短縮、接続箇所の低減をも可能にします。

アクアレックス - N

高密度ポリエチレン管

(黒色)

- ・可撓性
- 耐候性
- · 軽量
- 送配水用途
- ・ ISO 準拠サイズ
- 1

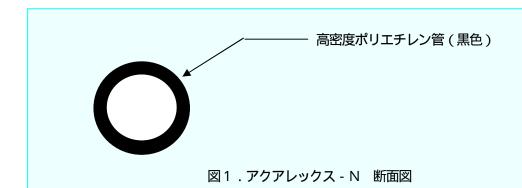
耐震性良好

耐震性に優れています。

耐腐食性に優れる

耐食性、耐候性に優れています。

軽量


金属管に比べて軽量です。

用途

水道配管をはじめ各種送配水、及び 各種産業用配管。(露出、埋設)

仕様

・最高許容圧力 :0.8MPa(at20)以下・使用温度 :常温(40 以下)

2.アクアレックス - Nの仕様

1.適用範囲

本館は、最高許容圧力 0.8MPa(at20)以下で使用する ポリエチレン管アクアレックス - N (以下、管と呼ぶ) に適用する。

2.構造

管の構造は、付表、付図および下記各項のとおりとする。

(1)高密度ポリエチレン管 (黒色)

管は、良質の高密度ポリエチレン (黒色) を連続押出成形したものとし、品質均一で水に侵されず、かつ、水質に悪影響を与えないものとする。

3.特性

管の特性は4項によって試験を行った時、下表のとおりとする。

= 4	н ±.	!#
表1	. '∤∵'	性表

項	目	特性
外観	管	内外面は実用的になめらかで、有害な傷、縦すじ、割れ、ねじれ 、その他の欠点がないものとする。又、管の断面は実用的に正円で、厚さ 均等なものとする。
構	造	表2の寸法を満足すること。
耐	圧	4項で示す試験圧力で試験を行った後、変形、漏水等の異常がないものと する。
引張	引張 強さ	20N/mm²以上
(内管)	伸び	350%以上

4. 試験方法

(1)外観試験

完成品および試料について、目視、手触りなどにより、きずの有無、表面の平滑度を調べる。

(2)構造試験

径および厚さの測定は、マイクロメーター、ノギス、ダイヤルゲージ、アイゲージ、 円周尺を用いて行うものとし、測定方法は次のとおりとする。

a.往

ノギスの場合は、円周方向に等間隔で4ヶ所以上で測定した値の平均値をとるものとする。 b.厚さ

円周方向に等間隔で4ヶ所の厚さを測定する。

(3)耐圧試験

完成品から長さ 1m 以上の管を採取し、2.5MPa×2分の水圧を印加して、変形、漏水等の有無を確認する。

(4)引張試験

完成品より採取した試料により、JWWA K-144 に準じて試験を行う。

5.管構造

管の構造を示す。

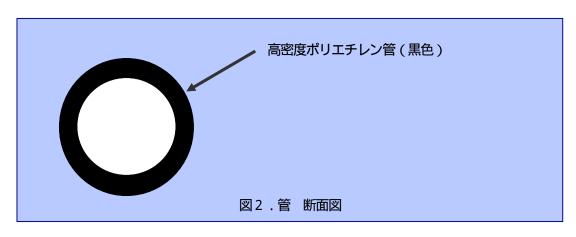


表2.管の構造表

		AQX	AQX	AQX	AQX	AQX	AQX	AQX	AQX	AQX	AQX	AQX
型番		- N-	- N -	- N -	- N-	- N -	- N -	- N -	- N-	- N-	- N-	- N -
		40 -	50 -	75 -	100 -	150 -	200 -	250 -	300 -	350 -	400 -	450 -
OD	mm	50	63	90	125	180	250	315	355	400	450	500
内径(参考)	mm	42.3	53.1	76	93	152.3	210.8	265.5	299.2	337.2	379.3	421.4
厚さ	mm	3.7	4.7	6.7	9.2	13.3	18.4	23.2	26.1	29.4	33.1	36.8
外径	mm	50	63.0	90.0	125.0	180.0	250.0	315.0	355.0	400.0	450.0	500.0
概算質量	約kg/m	0.6	0.9	1.8	3.4	7.1	13.9	2.1	28.1	35.6	45.2	55.8
含水時質量	約kg/m	2	3.1	6.3	12.2	25.3	48.8	77.5	98.4	124.9	158.1	195.2

3.管の設計

1 各部の材質

管の材料には高密度ポリエチレンを使用しており、水密性、耐圧性、耐候性の役割を持っている。

2耐内圧設計

耐内圧設計ではポリエチレンの長期クリープ特性を考慮して、MRS の考え方により、下記の通りとなる。

$$\sigma_1 = \frac{P_1 \times (D_1 - t_1)}{2 \times t_1} \qquad - (1)$$

又 SDR=D/t から(1)式は 1=P1×(SDR-1)/2 となる。

 $_{1}$ =0.8× (13.6 - 1)/2 =5.0 (MPa)

P₁:使用内圧 =0.8(MPa)

t₁:高密度ポリエチレン管厚さ(mm)

1: 高密度ポリエチレンの設計 (円周) 応力 (MPa)

D₁: ポリエチレン管外径(mm)

SDR=外径と厚さの比 外径/管厚さ(13.6)

ここで

MRS: ポリエチレン管の長期静水圧強度=10(MPa)

MRS: 管が20 で50年以上耐えうる円周

方向応力で ISO TR 9080 による。

C:総合安全係数はC=MRS/ 1

であり、₁=5.0 (MPa)はC=2.0 となる。

・高密度ポリエチレン管厚さ設計

SDR=13.6によりサイズ毎の厚さは、表2の通りである。

・最高許容圧力の温度による低減

20 において 0.8MPa を管の最高許容圧力として使用する場合、温度によって最高許容圧力は下表の通りとなる。

表3. 最高許容圧力の温度による低減

温度	20	25	30	35	40
最高許容圧力(MPa)	0.8	0.74	0.69	0.64	0.59

•破壊圧力(長期)の設計(at20)

長期の破壊圧力については、下式から求められる。

$$P_{2} = \frac{2 \times t_{1} \times \sigma_{2}}{(D_{1} - t_{1})} - (2)$$

但し、 P₂: 高密度ポリエチレン管の破壊水圧(長期)(MPa) (at20)

t₁: 高密度ポリエチレン管厚さ(mm)

D₁: 高密度ポリエチレン管の外径 (mm)

₂: 高密度ポリエチレン管の MRS(10 N/mm²) (裕度 C 分は考慮せず)

SDR=D1/t1であり、(2)式を変形すると

$$P_2 = \frac{2 \times \sigma_2}{(SDR - 1)}$$

となる。従ってサイズによらず

$$P_2 = \frac{2 \times 10}{(13.6 - 1)}$$
 = 1.6MPa

となる。

・破壊圧力 (短期)の設計

短期の破壊圧力(初期特性)については、下式から求められる。

$$P_{3} = \frac{2 \times t_{1} \times \sigma_{3}}{(D_{1} - t_{1})} - (3)$$

但し、 P₃: 高密度ポリエチレン管の破壊水圧 (短期) (MPa) (at20)

t₁: 高密度ポリエチレン管厚さ(mm)

D₀: 高密度ポリエチレン管の外径 (mm)

3: 高密度ポリエチレン管の引張降伏強さ=20(N/mm²)

SDR=D1/t1であり、(3)式を変形すると

$$P3 = \frac{2 \times \sigma 3}{\left(\text{SDR} - 1\right)}$$

となる。従ってサイズによらず

$$P3 = \frac{2 \times 20}{(13.6 - 1)} = 3.2 \text{MPa}$$

となる。

3 . 送水設計

管の送水能力は、以下のヘーゼン・ウィリアムズの式により 求められる。

$$V = 0.84935 \cdot C \cdot R^{0.63} \cdot I^{0.54}$$

- (4)

もしくは

$$V = 0.35464 \cdot C \cdot d^{0.63} \cdot I^{0.54}$$

- (5)

$$Q = 0.27853 \cdot C \cdot d^{2.63} \cdot I^{0.54}$$

- (6)

$$d = 1.6258 \cdot C^{-0.38} \cdot Q^{2.38} \cdot I^{-0.205}$$

- (7)

$$I = \frac{h}{L} = 10.666 \cdot C^{-1.85} \cdot d^{-4.87} \cdot Q^{1.85}$$
 - (8)

但し

V:平均流速(m/sec)

d:管内径(m)

C:流速係数(140を使用)

I:動水勾配(‰)

Q:流量(m³/sec)

L:管の延長(m)

h:摩擦損失水頭(m)

R:径深=(流水の断面積)/(管路断面における接液部の周長さ) (m)

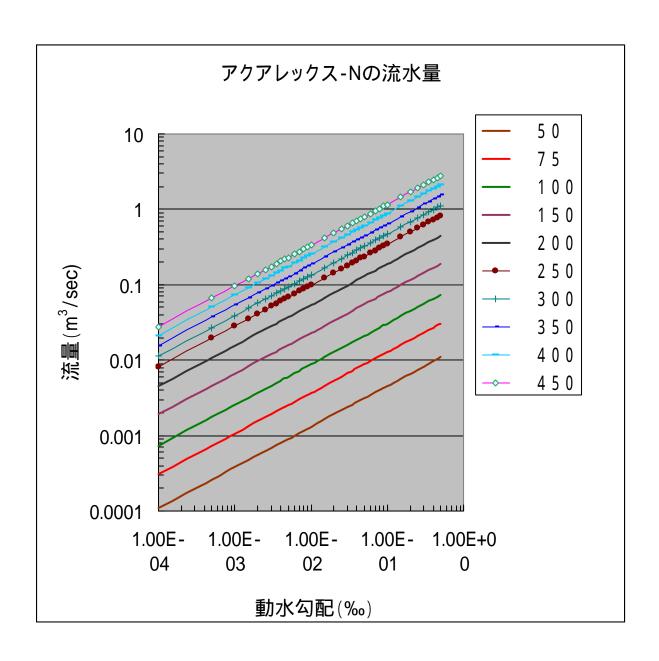


表4.管の流量(m³/sec)(計算例)

71 1. 5 77			衣4			/Sec)(a					
動水勾配(‰)	動水勾配	5 0	7 5	100	150	200	250	300	350	400	450
0.1	1.00E-04	1.093E-04	3.073E-04	7.335E-04	1.912E-03	4.496E-03	8.247E-03	1.129E-02	1.546E-02	2.107E-02	2.779E-02
0.5	5.00E-04	2.606E-04	7.328E-04	1.749E-03		1.072E-02	1.967E-02	2.693E-02	3.688E-02	5.025E-02	
1	1.00E-03	3.790E-04	1.065E-03	2.543E-03		1.559E-02	2.859E-02	3.915E-02	5.362E-02	7.307E-02	9.637E-02
1.5	1.50E-03	4.717E-04	1.326E-03	3.166E-03	8.253E-03	1.940E-02	3.559E-02	4.874E-02	6.675E-02	9.095E-02	1.200E-01
2	2.00E-03	5.510E-04	1.549E-03	3.698E-03	9.640E-03	2.266E-02	4.158E-02	5.693E-02	7.797E-02	1.062E-01	1.401E-01
2.5	2.50E-03	6.216E-04	1.748E-03	4.171E-03	1.087E-02	2.557E-02	4.690E-02	6.422E-02	8.795E-02	1.198E-01	1.581E-01
3	3.00E-03	6.859E-04	1.928E-03	4.603E-03	1.200E-02	2.821E-02	5.175E-02	7.086E-02	9.705E-02	1.322E-01	1.744E-01
3.5	3.50E-03	7.454E-04	2.096E-03	5.003E-03	1.304E-02	3.066E-02	5.625E-02	7.702E-02	1.055E-01	1.437E-01	1.896E-01
4	4.00E-03	8.012E-04	2.252E-03	5.377E-03	1.402E-02	3.295E-02	6.045E-02	8.277E-02	1.134E-01	1.545E-01	2.037E-01
4.5	4.50E-03		2.400E-03	5.730E-03	1.494E-02	3.512E-02	6.442E-02	8.821E-02	1.208E-01	1.646E-01	2.171E-01
5	5.00E-03		2.541E-03	6.065E-03		3.717E-02	6.819E-02	9.337E-02	1.279E-01	1.742E-01	2.298E-01
6	6.00E-03	9.973E-04	2.804E-03	6.693E-03			7.525E-02		1.411E-01	1.923E-01	2.536E-01
7	7.00E-03	1.084E-03	3.047E-03	7.274E-03	1.896E-02	4.458E-02	8.178E-02	1.120E-01	1.534E-01	2.090E-01	2.756E-01
8	8.00E-03	1.165E-03	3.275E-03	7.817E-03	2.038E-02	4.791E-02	8.789E-02	1.204E-01	1.648E-01	2.246E-01	2.962E-01
9	9.00E-03	1.241E-03	3.490E-03	8.331E-03	2.172E-02	5.106E-02	9.367E-02	1.283E-01	1.756E-01	2.393E-01	3.157E-01
10	1.00E-02	1.314E-03	3.694E-03	8.819E-03	2.299E-02	5.405E-02	9.915E-02	1.358E-01	1.859E-01	2.534E-01	3.342E-01
15	1.50E-02	1.636E-03	4.599E-03		2.861E-02	6.728E-02	1.234E-01	1.690E-01	2.314E-01	3.154E-01	4.159E-01
20	2.00E-02	1.911E-03	5.372E-03	1.282E-02	3.342E-02	7.858E-02	1.442E-01	1.974E-01	2.703E-01	3.684E-01	4.859E-01
25	2.50E-02	2.155E-03	6.059E-03	1.446E-02	3.770E-02	8.865E-02	1.626E-01	2.227E-01	3.050E-01	4.155E-01	5.481E-01
30	3.00E-02	2.378E-03	6.686E-03	1.596E-02	4.161E-02	9.782E-02	1.794E-01	2.457E-01	3.365E-01	4.585E-01	6.048E-01
35	3.50E-02	2.585E-03	7.267E-03	1.735E-02	4.522E-02	1.063E-01	1.950E-01	2.670E-01	3.657E-01	4.983E-01	6.573E-01
40	4.00E-02	2.778E-03	7.810E-03	1.864E-02	4.860E-02	1.143E-01	2.096E-01	2.870E-01	3.931E-01	5.356E-01	7.064E-01
45	4.50E-02	2.960E-03	8.323E-03	1.987E-02	5.179E-02	1.218E-01	2.234E-01	3.059E-01	4.189E-01	5.708E-01	7.528E-01
50	5.00E-02	3.134E-03	8.810E-03	2.103E-02	5.482E-02	1.289E-01	2.364E-01	3.238E-01	4.434E-01	6.042E-01	7.969E-01
60	6.00E-02	3.458E-03	9.722E-03	2.321E-02	6.049E-02	1.422E-01	2.609E-01	3.573E-01	4.893E-01	6.667E-01	8.793E-01
70	7.00E-02	3.758E-03	1.057E-02	2.522E-02	6.574E-02	1.546E-01	2.836E-01	3.883E-01	5.317E-01	7.246E-01	9.557E-01
80	8.00E-02	4.039E-03	1.136E-02	2.711E-02	7.066E-02	1.661E-01	3.048E-01	4.173E-01	5.715E-01	7.787E-01	1.027E+00
90	9.00E-02	4.304E-03	1.210E-02	2.889E-02	7.530E-02	1.770E-01	3.248E-01	4.447E-01	6.090E-01	8.299E-01	1.095E+00
100	1.00E-01	4.556E-03	1.281E-02	3.058E-02	7.971E-02	1.874E-01	3.438E-01	4.707E-01	6.447E-01	8.785E-01	1.159E+00
150	1.50E-01	5.672E-03	1.595E-02	3.806E-02	9.922E-02	2.333E-01	4.279E-01	5.860E-01	8.025E-01	1.093E+00	1.442E+00
200	2.00E-01	6.625E-03	1.862E-02	4.446E-02	1.159E-01	2.725E-01	4.999E-01	6.844E-01	9.373E-01	1.277E+00	1.685E+00
250	2.50E-01	7.473E-03	2.101E-02	5.015E-02	1.307E-01	3.074E-01	5.639E-01	7.721E-01	1.057E+00	1.441E+00	1.900E+00
300	3.00E-01	8.246E-03	2.318E-02	5.534E-02	1.443E-01	3.392E-01	6.222E-01	8.520E-01	1.167E+00	1.590E+00	2.097E+00
350	3.50E-01	8.962E-03	2.520E-02	6.014E-02	1.568E-01	3.686E-01	6.762E-01	9.259E-01	1.268E+00	1.728E+00	2.279E+00
400	4.00E-01	9.632E-03	2.708E-02	6.464E-02	1.685E-01	3.962E-01	7.268E-01	9.952E-01	1.363E+00	1.857E+00	2.449E+00
450	4.50E-01	1.026E-02	2.886E-02	6.889E-02	1.796E-01	4.222E-01	7.745E-01	1.061E+00	1.452E+00	1.979E+00	2.610E+00
500	5.00E-01	1.087E-02	3.055E-02	7.292E-02	1.901E-01	4.469E-01	8.198E-01	1.123E+00	1.537E+00	2.095E+00	2.763E+00
1000	1.00E+00	1.580E-02	4.442E-02	1.060E-01	2.764E-01	6.498E-01	1.192E+00	1.632E+00	2.235E+00	3.046E+00	
		•									

4.配管支持設計

配管したとき、管をあるレベルのたわみに抑えることと、内圧や熱伸縮による座屈(長手方向)しないよう、支持間隔を決める必要がある。

4-1. 自重撓みでの支持間隔

一定間隔毎に支持された管の最大たわみ量 Vmax は等分布自重(管内部の水の重さ含む)から次の通りとなる。

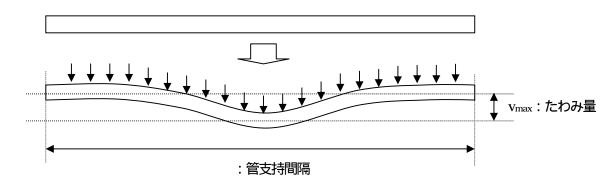


図4. 自重によるたわみ

$$v_{\text{max}} = \frac{w \cdot \ell^4}{192E \cdot I_2}$$
 - (9)

v_{max}:最大たわみ量(mm)

w:単位長さ当り等分布荷重(N/mm)(=含水時重量(kg/m)×9.8/1000)

: 管の支持間隔 (mm)

E:ポリエチレンの弾性係数 (765N/mm²)

弾性係数は温度依存性があり、露出配管を想定し40 での定数を使用

I2: 管の断面二次モーメント (mm4)

$$I_2 = \frac{\pi}{64} (D^4 - d^4)$$
 - (10)

D:ポリエチレン内管外径(mm)

d:ポリエチレン内管内径(mm)

許容撓み $v_a(mm)$ は $v_a = \frac{\ell}{350}$ とする。(水管橋の許容たわみより)

これらから、許容たわみ以下となる、限界支持間隔Liは

$$L_1 = \sqrt[3]{\frac{192 \ EI}{350 \ w}} - (11)$$

で与えられる。

4-2.管座屈を押さえる支持間隔

軸方向変位を拘束すると、内圧による応力と熱応力が重畳する軸方向応力が加わる。

・内圧による軸方向応力 内圧による軸方向応力は下式で求められる。

$$\sigma_p = \frac{P(D_1 - t_0)}{2t_1} \cdot v$$
 - (12)

但し

p:内圧による軸方向応力(N/mm²)

P:内圧(MPa)

D₁: 内管最大外径(mm) t₀: 内管最大厚さ(mm)

: ポリエチレンポアソン比(0.35)(配水ポリ規格より)

・温度変化による軸方向応力 温度変化によって発生する軸方向応力は下式で計算で求められる。

$$\sigma_{t} = E \cdot \alpha_{t} \cdot \Delta T \qquad - \text{ (13)}$$

但し

t:温度変化による軸方向応力(N/mm²)

E:ポリエチレン内管のヤング率(=765N/mm² at40)

t:ポリエチレンの線膜3張係数(1.3×10⁻⁴/)

T:温度変化幅:30-(-5)=35)

・軸方向発生応力

上記検討結果から管に発生する軸方向応力は下式の通りとなる。

$$\sigma_{\ell} = \sigma_{p} + \sigma_{t} \qquad - (14)$$

但し

: 管の軸方向発生応力(N/mm²)

・限界支持間隔

管支持間隔を長くすると、座屈しやすくなる。

座屈しないための、限界座屈応力は材料力学的にオイラーの座屈式(15)で求められる。

$$\sigma_k = \frac{4\pi^2 \cdot E \cdot I_2}{\ell^2 \cdot A} \qquad - (15)$$

但し

k: 限界座屈応力(N/mm²)

: 支持間隔(mm)

A: 管厚部断面積(mm²)

軸方向発生応力が限界座屈応力以上になると管の座屈が始まる。 このことから、座屈しない最長支持間隔 L2 は

$$L_2 = \sqrt{\frac{4\pi^2 \cdot E \cdot I_2}{A \cdot \sigma_k}} - (16)$$

で求められる。

4 - 3 管の支持間隔

管の許容撓みからの支持間隔 L1 と、内圧や熱伸縮による座屈面からの支持間隔 L2 のうち、短い支持間隔で設計する必要がある。

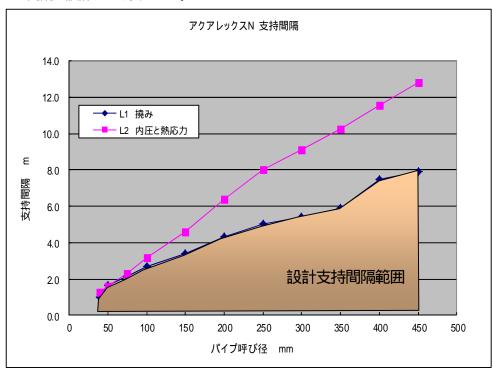


表 5 . 限界支持間隔 m

mm	L1 撓み	L2 内圧と 熱応力
40	1.0	1.3
50	1.7	1.6
75	2.1	2.3
100	2.7	3.2
150	3.4	4.6
200	4.3	6.4
250	5.0	8.0
300	5.4	9.1
350	5.9	10.3
400	7.4	11.5
450	7.9	12.8

4 . アクアレックス - Nの各種性能

1.曲げ半径

管の曲げ半径は以下の通りである。

管のみ 短期 R=8.8×D

長期 R = 15 x D

E F 付 R = 75 × D

D: ポリエチレン管外径



夜0.曲17十位									
サイズ	倍率	40	50	75	100	150	200	250	300
短期曲げ半径(m) (EF 継手無)	8.8D	0.45	0.6	0.8	1.1	1.6	2.2	2.7	3.1
長期曲げ半径(m) (EF 継手無)	15D	0.75	1.0	1.4	1.9	2.7	3.8	4.7	5.3
長期曲げ半径(m) (EF 継手有)	75D	3.8	5.0	7.0	10.0	14.0	19.0	23.6	26.6

サイズ	倍率	350	400	450
短期曲げ半径(m)(EF 継手無)	8.8D	3.5	4.0	4.4
長期曲げ半径(m) (EF 継手無)	15D	6.0	6.8	7.5
長期曲げ半径(m) (EF 継手有)	75D	30.0	33.8	37.5

2.材料基本物性

アクアレックス - Nの使用材料の基本物性を下表に示す。

曲げ性能

表7.材料基本物性

部位	項目	単位	数値
高密度	密度	g/cm ³	0.95
ポリエチレン管	融点		131
	降伏応力強さ	N/mm ²	> 20.0
	破断伸び	%	> 350
	ESCR	h	1000