高温超電導電力ケーブルの技術開発

Development of High-Tc Superconducting Power Cable

向山晋一*	石井 登*	飯 塚 博 之*	八木正史*	平 野 寛 信*
Shinichi Mukoyama	Noboru Ishii	Hiroyuki Iizuka	Masashi Yagi	Hironobu Hirano
丸山 悟* Satoru Maruyama	八木幸弘* Yukihiro Yagi	三村正直*² Masanao Mimura	佐藤 修*3 Osamu Sato	菊地文英*4 Ayafumi Kikuchi

概 要 古河電工では,平成12年度よりスタートした経済産業省プロジェクト「交流超電導電力 機器基盤技術研究開発」に参加して,超電導電力ケーブルの研究開発を実施している。超電導電力ケ ーブル(超電導ケーブル)は,ケーブルの小型化と大容量送電が可能であり,電力システムに対して 「CO2排出抑制」,「環境調和性の向上」,「安定度向上」,「コストダウン」のニーズに十分答えること ができ,大きな導入効果が期待できる。

超電導ケーブルの実用化においては,大容量で低損失特性をもつ超電導ケーブルの開発と,500 m 級の長尺冷却技術が必要と考えられている。大容量,低損失技術の開発においては,古河電工が開発 したフィラメントツイスト線材と,超電導導体のピッチ調整技術を用いることで,3 kAの電流容量 で1W/m級の低損失を実現できている。また,長尺冷却技術開発においては,30 m長さの超電導モ デルケーブルを用いて冷却収縮特性,熱損失特性,液体窒素の流動特性を評価し,所定の性能を得る ことができた。長尺冷却技術開発では,30 m超電導モデルケーブルの成果を反映させて,世界最長 となる500 m級の単心超電導ケーブル(77 kV級)を製造し,電力中央研究所横須賀研究所殿にて布 設試験,冷却試験,長期課通電試験を平成16年に実施する予定である。

1. はじめに

発電所から都市部へ電力を供給する電力系統は,架空送電線 と地中送電ケーブルで構成され,特に都市部においては地中送 電ケーブルが用いられている。現用の地中送電ケーブルは,導 体に銅を用いており,約1 A/mm2電流を流せる。一方,高温 超電導ケーブルは,液体窒素温度(77K)で超電導状態となる 酸化物超電導線材を用いることで,約50~100 A/mm²の電流 を流すことができ、地中送電ケーブルをコンパクトにすること が可能である。現用地中送電ケーブルでは,布設のために3m 級の洞道を建設する必要があるが,超電導ケーブルは建設コス トの安価な直径150 mm 管路に布設することが可能で,建設コ ストを大幅に下げることが可能である。また,超電導状態であ ることから電気抵抗による通電損失を極小化できるために,運 転コストが低減でき多量のCO2削減効果が期待できる。更に 超電導ケーブルは,超電導磁気シールドを持つことにより漏れ 磁界ゼロ化とリアクタンスを低減することができ,限界送電電 力を増加できるために,電力系統から中間変電所を省略して大

*4 超電導発電関連機器材料技術研究組合

幅な送電線建設のコストダウンが可能となる¹⁾。地球環境保全 という制約のもとでエネルギー供給の安定的な発展のためには エネルギーの電力化が必要であり,超電導ケーブルは電力系統 強化技術の確立に有効な技術である。

そのために,日米欧で超電導ケーブルの研究開発が進められ ている。国内では,平成12年より経済産業省の「交流超電導 電力機器基盤技術研究」プロジェクトが,新エネルギー・産業 技術総合開発機構(NEDO)から超電導発電関連機器・材料技 術研究組合(Super-GM)に委託されてスタートしている。こ のプロジェクトの一環として,古河電工は超電導ケーブルの開 発を進めており,平成15年には電力中央研究所の横須賀研究 所で500m長の超電導ケーブルの試験を予定している。

図1 極低温電気絶縁単心超電導ケーブル Single core HTS power cable with cryogenic dielectric

^{*} 環境エネルギー研究所 エネルギー伝送研究部

^{*2} メタル総合研究所

^{*3} 電力事業部 電力ケーブル製造部

2. 高温超電導電力ケーブル

超電導ケーブルは,電気抵抗がゼロとなる超電導特性を送電 線に応用するものであり,更に内径150 mmの管路に収納可能 なコンパクトなケーブルサイズで,大容量の電力を送電できる。 図1に,極低温電気絶縁単心超電導ケーブルの構造を示す。

超電導ケーブルは,内部を液体窒素が流れる可とう性のある フォーマの上に,超電導導体層と,電気絶縁層,超電導シール ド層の構成をもつケーブルコアが,スーパーインシュレーショ ン(SI)からなる真空断熱管の中に収納されている。

超電導導体層は,送電するための電流が流れる部分で, Bi2223銀合金シーステープ線材をフォーマ上にスパイラル巻 きで積層され形成されている。電気絶縁層は,半合成紙などの 絶縁紙を巻きつけて形成され,運転中は絶縁層の中に加圧した 液体窒素を含浸させて高い絶縁性能を維持している。超電導シ ールド層は,導体層と同様にBi2223銀合金シーステープ線材 を絶縁層上にスパイラル巻きで積層され形成されている。この シールド層は,ケーブル端部で三相のシールド層を短絡するこ とで,それぞれの導体との逆位相で同じ大きさの電流が誘導さ れ,その結果ケーブルから外部への磁界を遮蔽する。これより, 断熱管に生ずるシース電流を抑制することが出来て,損失低減 の効果がある。

3. 超電導ケーブルの低損失化研究

超電導電力ケーブルのメリットは,コンパクトサイズながら, 大容量の電力を,低損失で送電できることである。超電導ケー ブルの損失としては,交流通電時に導体で発生する交流磁界が, 超電導線に作用して発生する交流損失(ヒステリシス損失,結 合損失など)と,断熱管の侵入熱が主なものである。これら損 失を十分に小さくしなければ,超電導ケーブル導入のメリット がなくなる。そのために,超電導ケーブルを実用化するうえで, 交流損失及び断熱管の熱侵入の低減は重要な開発要素である。

Super-ACEプロジェクトにおいても、「大容量導体の交流損 失低減の研究」と「長尺断熱管の冷却特性向上の研究」の研究 テーマの中で,超電導導体の交流損失低減技術の研究と,断熱 管の低熱侵入化研究があり,古河電工が受託している。

3.1 超電導ケーブルの交流損失低減の研究

多層スパイラル構造のケーブル導体において,各層の巻付け ピッチを同じにした場合,各層のインダクタンスが外層ほど小 さくなるために,抵抗ゼロの超電導導体においては,電流は外 層に集中して流れる。このような偏流状態にある導体では,交 流電流を流すと,内部に残留する磁化が大きく,ヒステリシス 損失が大きくなる。この現象は,筆者らが50 m超電導導体の 通電試験で始めて発見した²)。

この偏流現象を解消し,ヒステリシス損失を低減するための 方法として,各層の電流分布を均一にする方法の検討を行い, 各層のスパイラルピッチを調整して,各層の電流を均一に(均 流化)する方法を発見した³⁾。このスパイラルピッチを調整し て均流化する方法を以下に示す^{43,5}。

多層導体の中で,隣り合うi層,i+1層の中で任意の1本の テープ線材を取り出して,それぞれのテープで作る閉回路を考 える(図2)。この閉回路が超電導導体で構成されている場合,

図2 i層目とi + 1層目のテープで囲まれた閉回路 Closed circuit enclosed with an i layer tape and an i + 1 layer

閉回路に鎖交する磁束 iは抵抗がゼロのために時間と共に変 化することができない。つまり(1)式が成立する。ちなみに, 超電導マグネットの永久電流モードは,マグネットの磁界が時 間的に変化しないこの性質を利用している。

$$\frac{d\phi_i}{dt} = 0 \tag{1}$$

i層目とi + 1層目のループで囲まれる磁束密度 $\phi_i \varepsilon$,円周方 向の磁束 $\phi_{i\theta}$ と,軸方向の磁束 ϕ_{iz} に分けて考える。 θ 成分の磁 束は,i層の半径を r_i ,電流値を I_i ,i層の半径を r_{i+1} ,それぞれ の層のピッチの最小公倍数を I_{p0} とすると(2)式を満足す る。

$$\phi_{i\theta} = \frac{\mu_0 I_{p0}}{2\pi} \ln \frac{r_{i+1}}{r_i} \sum_{k=1}^{I} I_k$$
(2)

また, z方向の磁束密度 ϕ_{iz} は,(3)式を満足する。

$$\phi_{i\theta} = \mu_0 l_p \left(\frac{a_{i+1}}{l_{p(i+1)}} - \frac{a_i}{l_{pi}} \right) \sum_{k=1}^{I} \pi r^2 \left(a_k \frac{I_k}{l_{pk}} \right) + \mu_0 l_p \left(\frac{a_{i+1}}{l_{p(i+1)}} \pi r^2_{(i+1)} - \frac{a_i}{l_{pi}} \pi r^2_i \right) \sum_{k=i+1}^{n} \left(a_k \frac{a_k}{l_{pk}} \right) (3)$$

(2)式と(3)式を(1)式に代入すると電流分布に関する基礎式が(4)が求まる。

$$\frac{d\phi}{dt} = 0 = \frac{1}{2\pi} \ln \frac{r_{i+1}}{r_i} \sum_{k=1}^{i} \left(\frac{dI_k}{dt} \right)
+ \left(\frac{a_{i+1}}{I_{p(i+1)}} - \frac{a_i}{I_{pi}} \right) \sum_{k=1}^{i} \pi r^2 k \left(a_k \frac{\left(\frac{dI_k}{dt} \right)}{I_{pk}} \right)
+ \left(\frac{a_{i+1}}{I_{p(i+1)}} \pi r^2_{i+1} - \frac{a_i}{I_{pi}} \pi r^2_i \right) \sum_{k=1}^{n} \left(a_k \frac{\left(\frac{dI_k}{dt} \right)}{I_{pk}} \right)$$
(4)

すべての層の基礎式を用いて,n元連列方程式を立て,各層 の電流が等しくなる条件で解いて,得られる各層のピッチ *I_{pi}*が,導体を均流化するスパイラルピッチとなる。

ところで,現在,超電導ケーブルに適用できる超電導線材と して最も開発が進んでいるのは,Bi2223銀合金シーステープ である。これは,Bi2223銀合金シーステープが唯一77 Kで, ケーブルで必要とされる高い臨界電流密度(*J_e*)と,1 km級の 長尺線が得られているためである。Bi線材は,一般に高い臨 界電流密度を得るために,ロールやプレスによりテープ形状に 形成されて用いられる。線材構造は,数 µm厚さの細いBi2223 フィラメントが,幅3.5 mm厚さ0.2 mmのテープ状の常電導金 属シース内に多数本埋め込まれた断面形状をもつものである。

超電導線は 時間的な磁界変動が加わると交流損失が発生し, 超電導の基本特性の低下や用途制約が起こる。したがって,実 用超電導線材にとって交流損失の低減が重要な技術である。低 交流損失技術として,超電導フィラメントを撚線加工(ツイス ト)する方法がある(図3)。このフィラメントツイストは, 金属系の超電導線材ではすべての線材において行われている技 術であるが,酸化物超電導線では,フィラメントにダメージを 与え、性能が劣化する問題があった。古河電工では製造条件の

図3 フィラメントツイスト線材の構造図 Structure of filament twisted tape

表1	超電導導体の仕様
	Specifications of the HTS conductor

項目	仕様
超電導線	Bi2223銀合金テープ
寸法	0.21 mm × 3.3 mm
フィラメントピッチ	15 mm
I_c (77.3 K, 0 T)	45 A
フォーマ	外径 35.0 mm
導体層	4層構造
ピッチ	1層 180 mm
	2層 480 mm
	3層 - 510 mm
	4層 - 160 mm
テープ本数	118本
サンプル長	2 m

最適化により,ツイストしない超電導線とほぼ同じ性能を持つ フィラメントツイストした超電導線材を製造する技術を確立し た。また,製造した超電導線の交流損失も,フィラメントツイ ストしていない線材に比べ1/5まで小さくすることができた⁶)。

ピッチ調整技術,超電導線のフィラメントツイスト技術を用 いて,超電導導体を製作して交流損失の評価実験を行った"。 超電導導体の諸元を表1に示す。

この超電導導体に,3 kAまでの交流電流を通電して,交流 損失を測定した。その結果を図4に示す。この導体の交流損失 の実測値は,ピッチ調整を行わない導体の交流損失を表す円柱 導体モデル³⁾と,フィラメントツイストを行わない超電導線で ピッチ調整だけをした導体を表すUCDモデル³⁾の計算値に比 べて,小さな交流損失となることが確認され,3 kAで1 W/m の交流損失が達成できた。

導体の交流損失低減の研究は,交流高温超電導ケーブルの開 発に関する重要課題の一つであり,研究が進められている。一 方で,交流損失を精度良く測定する技術の開発も重要になって 来ている。現在,超電導ケーブルの交流損失は,ロックインア ンプを用いて,電流値と電圧値及びその位相差から求めている が,電極の取り付け方法や測定精度についてはいまだに確立さ れた手法はない。そこで,交流損失測定手法として,カロリメ トリック装置を用いた,熱的に測定する試みを進めている^{7,18}。 この方法によれば,交流損失は,すべて熱量に換算されるので, 測定手法としては,非常に確度の高いものといえる。図5に開 発したカロリメトリック装置を示す。本装置により,超電導導 体の交流損失を精度よく測定することができている。今後,電 気的測定法の高精度化に反映させる予定である。

図4 超電導導体の交流損失測定結果 The result of AC loss measurements in HTS conductor

Calorimetric device for measuring AC losses in HTS conductor

゚プ
緣

表2 30 m 超電導モデルケーブルの諸元 Specifications of 30-m HTS model cable

3.2 30 m モデルケーブル試験

超電導ケーブルの製造,布設,及び冷却時の熱収縮などの超 電導ケーブルへの影響を調査するために,30m長の超電導ケ ーブルを製作して,冷却試験を実施した⁹。

表2に,30m超電導ケーブルの諸元を示す。2本の超電導線 と18本のダミー線を螺旋状にフォーマに巻きつけた導体層と, その上に絶縁紙を積層した電気絶縁層からなる超電導ケーブル コアを,ステンレスコルゲート管からなる断熱管に収納した構 成とした。写真1にモデルケーブルのカットモデルを,写真2 にU字型に布設した30mケーブルを示す。

3.2.1 熱収縮試験

一般の金属では,室温から77 Kまで冷やすと約0.3% 収縮す ることが知られている。超電導ケーブルの場合,ケーブルコア と内部断熱管が収縮するのに対して,外部断熱管は収縮せず, またケーブル布設形態を考慮すると,ケーブルの熱収縮を許容 することができない。そこで,30 m超電導ケーブルを冷却し て,発生する熱応力を,熱収縮量をケーブルを直線状態で布設 した場合と,U字形状で布設した場合について測定した。この 結果,直線布設の場合,熱収縮長さはケーブル長さの0.3%に 相当し,そして,熱ストレスは,8.8 kNであった。U字形にお いて,両端の終端での縮み量から評価した熱収縮長さは,おの おの3.4 cm,及び,4.5 cmであった。U字形における収縮長さ がストレート形のそれより約1 cm短い理由は,ケーブルコア, 及び,内側の冷却パイプがU字の部分において内側へ引かれた ことであり,その結果,U字の熱応力は,2.9 kNに減少した。

3.2.2 臨界電流試験

図6は,おのおのケーブル製造後のサンプル及び,ケーブル 布設形状を直線状そしてU字形状にしたときの,30m超電導 ケーブルの臨界電流を示す。各I_eは,ケーブル製造前の超電導 線のI_eによって規格化した。ケーブル製造によるI_e劣化は, 5%以内に最小化され,そして,ケーブルの布設,冷却時の熱 収縮及び応力がケーブルに加わっても劣化は無かった。この結 果より,超電導ケーブルが,製造,布設,冷却などに対して健 全性を持つことを確認した。

写真1 30 m モデルケーブル Sample of the 30-m model cable

写真2 30 m モデルケーブル試験 The 30 m HTS cable installed in oxbow shape in Furukawa's laboratory for tests

図6 30mケーブル臨界電流測定結果 The critical currents of the 30-m cable after cable manufacturing and installation

3.2.3 熱侵入試験

ケーブルへの熱侵入は,液体窒素を収容したケーブルからの 蒸発ガスで測定された。断熱管は,ステンレス製の2重のコル ゲート管の間に,スーパーインシュレーションを多層積層して, 真空状態に保持されたもので,高い断熱性能を有する。この断 熱構造の最適化により,超電導ケーブルへの熱侵入は,1 W/mと従来の超電導ケーブルの半分にすることができた。ま た,U字布設の測定で,熱収縮により側圧が加わった場合にお いても,熱侵入は2W/mと低い値となることを確認した。

図7 30 m 超電導モデルケーブルの圧力損失測定結果 The pressure drop of single-phase LN₂ that flow into 30m long HTS cable

3.2.4 圧力損失試験

冷却システムを設計し,そして,超電導ケーブルの冷凍機設 置間隔を決定するために,ケーブルに流れる液体窒素の圧力損 失を調査することは,重要である。我々は,30mケーブルに 50 l/minの過冷却液体窒素を循環させて,圧力損失を測定した。 図7に,1m当たりの圧力損失の測定結果を示す。

4. 500 m 長超電導ケーブル実証試験

Super-ACE プロジェクトにおいて,世界最長の500 m長の超 電導ケーブル実証試験を,平成15年度下期より平成16年度の 約1年間,電力中央研究所横須賀研究所殿にて実施する⁹⁾。こ の500 m長の超電導ケーブル実証試験は,極低温冷却技術(真 空断熱,熱収縮,液体窒素流動)の健全性を検証するもので, この結果により5 km級超電導ケーブルの成立性を明らかにし て,超電導ケーブルの実用化を目指すことを目的とする。その ための試験内容として,下記のものを予定している。

- 基本試験 : 初期冷却特性,ケーブル敷設による導体 の健全性,交流損失
- 定常運転試験:長期課通電時の安定性,再冷却によるヒ ートサイクルの影響
- 負荷変動試験:負荷変動の影響,過負荷電流の影響
- 過酷試験 : 冷却停止時の限界条件,耐電圧,過負荷 限界

このプロジェクトは,ケーブル及び機器の製造とケーブル布 設を古河電工が担当し,試験の実施及び評価を電力中央研究所 殿,中部電力殿,東京電力殿,関西電力殿が実施することが決 定した。ケーブルは,実際の管路布設されるケーブルの布設形 態を模擬するもので,直径10 mの曲率,傾斜角10度の高低, 10 mの垂直立ち上がりなどを模擬する予定である。

また,超電導ケーブルは,77 kVの極低温電気絶縁方式の単 心超電導ケーブルで,超電導ケーブルとして必要とされる,電 気絶縁性能,布設引込み及び地絡・短絡事故に耐えるための機 能が設計に反映されたものを目指している。

5. おわりに

超電導ケーブルを実現するためには,長距離超電導ケーブル の冷却特性,及び液体窒素の循環について理解する必要がある。 このテーマは,Super-ACEプロジェクトにおいて重点課題とし て,世界最長となる500 m長の超電導ケーブルによる実証試験 が計画される¹⁰。今回の30 m超電導モデルケーブル試験は, ケーブル設計データを獲得するためと,生産技術を向上させる ために実施され,実験は成功し,貴重なデータを取得すること ができた。

2004年からの約1年間の500 m超電導ケーブル実証試験のために,今回の30 mケーブルテストの成功から,500 mケーブ ルの製造及び試験の準備をスタートした。

参考文献

- 1)13年度委託業務成果報告書:「交流超電導電力機器基盤技術研 究開発超電導送電ケーブル基盤技術の研究開発 超電導限流器基 盤技術の研究開発 電力用超電導マグネットの研究開発 トータ ルシステム等の研究」, NEDO
- 2) S. Mukoyama, K. Miyoshi, H. Tsubouti, N. Ichiyanagi, M. Mimura, N. Uno, Y. Tanaka, H. Ishii, S. Honjo, Y. Sato. Y. Iwata and T. Hara: "50m- LONG HTS CONDUCTOR FOR POWER CABLE", IEEE Trans. Appl. Superconductivity IX, Vol. 7, No. 2. p1069 (1997)
- 3)向山,三好,三村,坪内,吉田,松尾,本庄,三村,高橋:「高温超電 導ケーブルの交流損失について」,電気学会超電導応用電力機 器 リニアドライブ合同研究会資料,ASC-00-12/LD-00-12, (2000)
- 4) 浜島, A. K. M. Alamgir, 原田, 津田, 小野, 高野: 「超電導導体内 の電流分布解析」, 低温工学 Vol.35, No. 4, p176 (2000)
- 5) 12年度委託業務成果報告書:「交流超電導電力機器基盤技術研 究開発超電導送電ケーブル基盤技術の研究開発 超電導限流器基 盤技術の研究開発 電力用超電導マグネットの研究開発 トータ ルシステム等の研究」, NEDO
- 6) M. Mimura, A. Takagi, K. Kosugi, M. Sugimoto, A. Kimura, T. Tanigawa, S. Honjo, T. Mimura and Y. Takahashi: "Development of Twisted Multifilamentary Tape Using AgMg Alloy", Advances in Superconductivity XII, Springer-Verlag, p661 (1999)
- 7) M. Yagi, S. Tanaka, S. Mukoyama, M. Mimura, H. Kimura, S. Torii, S. Akita and A. Kikuchi : "Measurement of AC Losses of Superconducting Cable by Calorimetric Method and Development of HTS Conductor with Low AC Losses", ASC2002, Houston, USA, 2002, 1LG05
- 8) 八木, 向山, 田中, 菊地:「超電導ケーブルの交流損失測定用カ ロリメトリック装置の開発」, 平成14年電気学会電力・エネル ギー部門大会論文集(B), 2002, p358
- 9) S. Mukoyama, H. Hirano, M. Yagi, H. Kimura and A. Kikuchi : "Test results of 30m High-Tc Superconducting power cable", ASC2002, Houston, USA, 2002, 1LH03
- 10) K. Ueda, O. Tsukamoto, S. Nagaya, H. Kimura and S. Akita : "R & D of 500m Super-conductive Cable in Japan", ASC2002, Houston, USA, 2002, 1LL01

一般論文