高非線形ファイバのモジュール化と その超高繰返しサブピコ秒パルス列発生への応用

Highly Nonlinear Fiber Module and Its Application to Generation of Ultra-High Repetition-Rate Sub-Picosecond Optical Pulse Trains

五十嵐浩司*	飛 岡 秀 明*	黒木慎二*	宮部 亮*	廣石治郎*
Koji Igarashi	Hideaki Tobioka	Shinji Kuroki	Ryo Miyabe	Jiro Hiroishi
高橋正典*	八木 健*	麻生 修*2	並木 周*	
Masanori Takahashi	Takeshi Yagi	Osamu Aso	Shu Namiki	

概 要 高非線形ファイバ (highly nonlinear fiber: HNLF)の各種非線形デバイスに対する有効性の 吟味とモジュール化の検討を進めている。HNLFの応用の一つとして超高繰返しサブピコ秒パルス列 発生へのHNLFの適用を検討した結果、コム状分散プロファイルファイバを用いる160 GHz 0.8 ps 超高純度ソリトン列発生に対するHNLFの有効性が示された。また、利用が簡便な形態であるHNLF モジュールを開発した。このモジュールのサブシステム適用も検討されており、実際に、光遅延回路 や全光再生中継に対する有効性も示されている。

1. はじめに

単一チャネルの容量が100 Gbit/sを超える超高速光ファイバ 伝送システムにおいて必要不可欠な技術の一つが非線形光信号 処理である。この非線形材料として、半導体や誘電体の活用が 検討されており、それらを用いるデバイスも実現されている。 これらの中でも、非線形応答の高速性、低雑音性そして低損失 性に優れているのが光ファイバである。実際に、光ファイバに おける四光波混合¹⁾や非線形偏波回転²⁾を活用する方式や、非 線形光ファイバループミラー³⁾を用いる手法などの数多くの提 案があり、特に、それらの広帯域性や超高速性に優れた性能が 報告されている。

上述非線形ファイバデバイスの高性能化に対して最重要課題 の一つが光ファイバの非線形性増強である。元来、シリカ系ガ ラス材料の3次の非線形係数は大きくないものの、光ファイバ コアへの高屈折率材料添加やコア径の低減などの工夫によって ファイバ非線形性増大が可能となる。実際に、従来ファイバに 比べて10倍程度大きな非線形係数を有する高非線形ファイバ (HNLF)が報告されている^{4),5)}。また、このHNLFを活用する デバイスも数多く報告されており^{4),6)~8)}、更に、そのサブシ ステムへの応用に対する議論も進められている。

以上の背景に対して、我々は様々な非線形光信号処理デバイ ス及びサブシステムに対するHNLFの有効性を吟味している。 同時に、HNLFのモジュール化の検討も進めている。サブシ ステムにおいてHNLFを活用する際には、安定性・信頼性の優れた利用が容易な形態となっていることが必要不可欠であり、 HNLFのモジュール化は最重要課題である。本稿では、HNLF の応用の一つである超高繰返しサブピコ秒ソリトン列発生⁸⁾と 開発を進めているHNLFモジュールについて示す。

2. HNLFを用いる超高繰返し高純度 サブピコ秒ソリトン列発生

100 Gbit/s/ch 超級光伝送システムにおいて、そのビットレートに対応する高繰返し周波数を有するクロックパルス列発生源が重要となる。これに対して、従来の電子回路技術を基本とする方式では100 GHzを超える領域での動作が困難であるために、10 GHzもしくは40 GHzパルス列を分波・遅延付加・合波することによって時間多重し所望の超高繰返しパルス列を得るのが一般的である。ただし、遅延の制御・安定化が容易ではなく、パルス列のコヒーレンス劣化も問題となり得る。

これに対して我々が注目しているのが,光ファイバにおける 断熱ソリトン圧縮プロセスを通じて2モードビート信号光を光 ソリトン列に変換する方式である⁹⁾。所望な繰返し周波数に対 応する波長差を有する波長の異なるCW光2波を合波すること によってビート信号光を光学的に発生させることが可能である ために,この方式は高速な電気回路を必要としない。更に,ビー ト光からソリトン列への変換に断熱ソリトン圧縮過程を用い ることによって非常に純度の高いソリトン列の発生が可能とな り得る。また,比較的低速な(MHzオーダ)電子回路を用いる CW波長の安定化・制御によって外部参照信号との同期も可能 であることも追記する。

^{*} 研究開発本部 ファイテルフォトニクス研究所

^{*2} 研究開発本部 横浜研究所

この超高繰返しソリトン列発生技術のキーポイントとなるの が断熱ソリトン圧縮である。この実現には、ラマン増幅ファイ バ⁹⁾,分散減少ファイバ¹⁰⁾,ステップ状¹¹⁾・コム状¹²⁾分散を 有するファイバを用いる方式が報告されている。この中でも、 我々が注目しているのは分散値が大きく異なる2種類のファイ バによって構成されるコム状分散を有するファイバ (comb-like dispersion profiled fiber: CDPF)である。作製容易性の観点か らは、たかだか2種類のファイバによって断熱ソリトン圧縮が 実現される CDPF に勝るものはない。加えて、圧縮の制限とな る誘導ブリリュアン散乱現象の抑圧にも CDPF は有利である。 これは、一般に分散値が大きく異なるファイバは異なるブリ リュアン利得帯域を有するためである¹²⁾。

CDPFの原理概念図を図1に示す。理想的なCDPFとは非線 形媒質と分散媒質が交互に繰り返される伝送路である。一般に、 その非線形媒質にゼロ分散シフトファイバ(dispersion-shifted fiber: DSF)を用い、分散媒質としてシングルモードファイバ (single-mode fiber: SMF)を使用し、それらを融着接続するこ とによってCDPFを作製する。ここで、非線形媒質にHNLF を用いることによって、より理想的な非線形媒質が実現され得 るだけではなく、そのファイバの極端な短尺化も可能となり得 ることが予想される。我々はこの点に注目し、HNLFを用いる CDPFを作製し、160 GHzビート光に対する圧縮性能を明らか にすると共に、HNLFの効果も検討した。

実験系を図2に示す。160 GHzの光周波数差を有する2台の 半導体レーザ出力CW光を合波することによって得られる160 GHzビート光をHNLFとSMFの6ペアからなるCDPFによっ て断熱ソリトン圧縮する構成である。ここで用いたHNLFの分 散値と非線形係数はそれぞれ-0.8 ps/nm/kmと24 1/W/km である。このCDPFの分散D及び各ペア平均分散Daveプロファ イルをそれぞれ図3最上部に示す。注目すべき点は、Daveが初 段3ペアでは増大し、後段3ペアでは減少するプロファイルと なっている点である。初段の分散増大CDPFによって効率良 くビート光をソリトン列に変換し、その後に分散減少CDPFに よってソリトン圧縮する設計となっている。また、非線形係数

図1 CDPFの概念図. frepは繰返し周波数 Schematic of CDPF, where frep is repetition rate

図2 CDPFを用いる160 GHzソリトン列発生実験系 Experimental setup for 160 GHz soliton train generation based on CDPF γのプロファイルを図3中央部に示す。CDPFにHNLFを活用 したことによってファイバ分散だけではなく非線形係数も櫛状 のプロファイルと成り,より理想的なCDPF伝送路が実現され ることが示されている。加えて,正常分散HNLFの使用によっ て変調不安定性利得を介する雑音増幅が抑圧される点も注目さ れたい。

このCDPF圧縮系の入出力パルスの自己相関波形と光スペクトル波形をそれぞれ図4(a)と(b)に示す。破線はパルス波形をsech²波形にフィッティングした結果である。自己相関波

図3 分散Dと非線形係数 γ のプロファイルと非線形長と 分散長の比 L_D/L_{NL} , 破線は各ペアの平均分散値 D_{ave} Profile of dispersion D and nonlinearity γ , and ratio of dispersion length to nonlinear length L_D/L_{NL} . Broken line shows the averaged dispersion for each pair D_{ave}

図4 CDPF入出力パルス列の(a)自己相関波形と (b) 光スペクトル波形, *ΔtΔv*は時間帯域幅積 (a) Autocorrelation traces and (b) optical spectra of CDPF input and output pulse trains, where *ΔtΔv* is time-bandwidth product

形上だけではなく光スペクトルにおいてもCDPF出力パルス 波形と破線が良く一致することから,高純度なソリトン列が発 生していることが示されている。更に,光スペクトル上におけ る光信号成分と雑音成分のピーク比が40 dB以上確保されてい るだけでなく,CDPF入出力パルススペクトルのモード線幅に 大きな変化が無いことから,圧縮過程における雑音増幅が充分 抑圧されていることが示唆されている。自己相関波形に対する sech²フィッティングから,その時間幅は830 fsと算出される。 また,*AtAv*は0.34であり,ほぼフーリエ変換限界パルスが得 られていることが示されている。

ここで、CDPFにHNLFを用いた効果を定量的に議論する ために、HNLF入力及びSMF出力における非線形長と分散値 の比*L*_D/*L*_{NL}をそれぞれ図3最下部の黒丸と白丸でプロットす る。注目すべき点は、HNLFではその値が1以上であり、SMF においてはその値が1以下となっている点である。これらから HNLFにおいて非線形効果が支配的であり、逆にSMFでは分 散効果が支配的であることが示された。以上考察からCDPFへ のHNLFの活用によってより理想的なCDPF伝送路が実現さ れ、その結果として超高品質なソリトンが発生されたと考えら れる。

3. HNLFのモジュール化

前章で述べた超高繰返しパルス列発生だけでなく,波長変換 やスペクトル広帯域化に対するHNLFの有効性が吟味されて おり,それらのサブシステム応用も議論されている。しかしな がら,一般に,ファイバデバイスは外乱に弱く使用が簡便とは 言いがたい。更に,HNLFのような通常ファイバとはコア径大 きく異なる特殊ファイバは従来ファイバとのコネクタ接続が困 難である。

以上を鑑みると、使用が簡便かつ高安定な形態としてHNLF をモジュール化することが必須課題となる。これに対して、我々 は通常ファイバとの接続が可能な小型HNLF-Boxの開発を進 めている。一般に、ファイバデバイスは巻き付けコイルによっ て寸法が決定される。HNLFは光閉じ込めが強いために小型コ イルへの巻き付けが可能となり、モジュールの小型化が実現 され得る。また、そのコイル巻き付けHNLFを箱詰めするこ とによって、外乱耐性が良好なデバイスも実現可能となる。更 に、HNLF両端にコネクタ付短尺SMFを低損失融着すること によって、一般的なファイバとの接続が容易となる。本章では、 このHNLFモジュール化における工夫の詳細を示す。

3.1 コイル巻き付け

今回,モジュール化のファーストステップとして採用したの は16 mm径の中型コイルである。コイル巻き付け前後での特 性を**表1**にまとめる。ファイバ曲げ誘起ロスが抑圧されている だけでなく,デバイス性能として重要なゼロ分散波長λ0や分散 スロープの変化も抑圧されている点に注目されたい。ただし, 偏波モード分散値が若干増大しているものの,この値程度なら ばデバイス性能に大きな影響を与えないと考える。

3.2 ファイバ端処理

HNLFとSMFのコネクタ接続は困難であるものの,SMFと HNLFの融着接続の低損失化は容易である。実際,融着条件の 最適化を通じてSMFとHNLFの融着損失は0.1 dB以下まで低

表1	HNLFコイル巻き前後の特性 Characteristics of HNLF before and after coiling			
		before coiling	after coiling	
$\lambda_0 (nm)$		1494	1497	
slope (nm)		0.02	0.02	
loss (dB)		0.47	0.48	
$PMD (ps/\sqrt{km})$		0.03	0.13	

図5 HNLFとSMFの接続及び入出力端 Splicing of HNLF and SMF, and input and output ends of HNLF

図6 HNLFモジュール (L180 mm × W150 mm × H40 mm) Appearance of HNLF module

減可能である。したがって、図5に示すようなHNLF両端にコ ネクタ付SMFを融着することによって、一般的なデバイスと 同様に、本モジュールでも通常ファイバとの低損失コネクタ接 続が可能となる。

3.3 モジュールの形態とその性能

HNLFモジュールの概観を図6に示す。コイル巻きされた HNLFが箱詰めされている。また、入出力端にはコネクタ付 SMFが融着されており、その融着ロスは0.2 dB以下である。 このような外乱にも強く使用が容易なモジュールはサブシステ ムへの応用に有利な形態といえよう。実際に、このモジュール は光遅延回路¹³⁾や40 Gbit/s伝送における光再生中継¹⁴⁾への応 用が吟味されており、その有効性も示されている。

4. まとめ

HNLF応用の一つとして超高繰返しパルス列発生を検討した 結果,HNLFを用いるCDPFによる160 GHz 0.8 ps超高純度ソ リトン列発生が示された。その高純度ソリトン発生にはHNLF が必要不可欠である。また,HNLFのモジュール化の検討も進 めている。モジュール化は利用簡便かつ高安定な形態であるた めに,サブシステム応用には重要である。実際に,このモジュー ルの光遅延回路や全光再生中継に対する有効性も示されてい る。

参考文献

- 1) T. Morioka et al.: Electron. Lett., **32**(1996), 833.
- 2) S. Watanabe et al.: OFC2003, PD16-1 (2003).
- 3) T. Sakamoto et al.: IEEE Photon. Technol. Lett., **13**(2001), 502.
- T. Okuno et al.: IEEE J. Selct. Top. Quantum Electron., 5 (1999), 1385.
- 5) J. Hiroishi et al.: ECOC2002, PD-1.5 (2002).
- 6) O. Aso et al.: Electron. Lett., **36**(2000), 709.
- 7) F. Futami et al.: OAA2003, **MD07**(2003), 82.
- 8) K. Igarashi et al.: CLEO2003, CMH7 (2003).
- 9) E. M. Dianov et al.: Opt. Lett., 14(1989), 1008.
- 10) S. V. Chernikov et al.: Electron. Lett., **28**(1992), 1210.
- 11) S. V. Chernikov et al.: Electron. Lett., 29 (1993), 1788.
- 12) S. V. Chernikov et al.: Opt. Lett., 19(1994), 539.
- 13) T. Sakamoto et al.: Electron Lett., **39**(2003), 198.
- 14) K. Igarashi et al.: OAA2003, **MD02**(2003), 67.