超低損失/多チャンネルアサーマルAWG モジュール

Ultra-Low Loss Athermal AWG Module with a Large Number of Channels

長谷川淳一* Junichi Hasegawa 奈良一孝* Kazutaka Nara

概 要 波長合分波器の役割を担うAWGの要求の一つに,アサーマル化(温度無依存化)がある。 我々は,この要求を実現するために,独自のアサーマル化技術を用い,従来実現が難しかった多チャ ンネルアサーマルAWGを開発した。また,回路パターンの工夫により,100GHz-48chアサーマル AWGモジュールの低損失化を行った。開発したモジュールは,挿入損失2.8 dB以下と低損失を実現 しており,その温度特性はすべてのチャンネルにおいて,中心波長変動±0.015 nm以下,挿入損失 変動±0.1 dB以下であった。

1. はじめに

近年,多様化が進むD-WDMシステムにおいて,波長合 分波器として重要な役割を担うAWG (arrayed waveguide grating)は、電源を必要としないアサーマル(温度無依存)化 が強く求められている。アサーマル化の大きなメリットは、電 力が不要になることは言うまでもなく、AWGモジュールの温 度監視が不要になる点にある。そのため、AWGモジュールを 局内の伝送装置より切り離せ、電力の無い様々な場所に設置 でき、今後のより多様化する光通信ネットワークのニーズに対 応できるものと考えられる。さらに、モジュールの信頼性が向 上する点も挙げられる。従来のヒータ等を使用した温度制御型 AWGモジュールでは、AWGの中心波長を一定に保つために、 AWGチップを70℃以上の高温で保持しなければならず、モ ジュール化に使用されている接着剤の温度による劣化が懸念さ れていた。そのため、アサーマル化を行えば、高温保持が不要 になるため、その信頼性は向上することになる。

このAWGのアサーマル化に関して、いくつかの試みが報告 されている^{1)~4)}が、実際にD-WDMシステムで使用するため には、チャンネル数の自由度と温度依存性のさらなる低減が必 要であった。そこで、我々は独自のアサーマル化原理を考案し、 その原理を用いてスペクトラム形状がGaussianとFlat-topの中 間の形状を持つSemi-Flatの100GHz-48chのアサーマルAWG モジュールを開発した^{5).6)}。今回は、低損失化技術7)により、 挿入損失が2.8 dB以下を実現した超低損失100GHz-48chアサー マルAWGモジュールを開発したので報告する。さらに、モ ジュールの低コスト化を実現できうる独自の中心波長補正技術 を確立したので併せて報告する。

2. アサーマル化技術

2.1 AWGの合分波原理

AWGはシリコン基板上に石英系ガラスによりクラッドおよ びコアを堆積し、光導波路を形成したPLC (planar lightwave circuit)である。図1にAWG回路の概略図を示す。AWGは入 力導波路、入力スラブ導波路、アレイ導波路、出力スラブ導波 路,出力導波路により構成されている。以下に波長分波器とし て使用される際のAWGの機能について説明する。入力導波路 に多重化された光が入力されると、スラブ導波路で回折により 広がりアレイ導波路に入射される。アレイ導波路は、隣り合っ た導波路の長さが、ある一定の長さALだけ異なっているため、 このアレイ導波路部を通過することで位相差がつけられ、波長 に応じて出力スラブ導波路端部の異なった位置に集光される。 そのため、それぞれの集光位置に出力導波路を設けることによ り異なった波長の光を取り出すことができる。また、AWGは 波長合波器としても機能する。上述の場合とは逆に, 各々の出 カスラブ導波路から各波長の光を入力すると、入力導波路から これらの光が合波されて出力される。

^{*} 研究開発本部 ファイテルフォトニクス研究所

2.2 AWGの温度依存性

光導波路を構成する石英系ガラスの屈折率に温度依存性が あるため、それに起因した形で、AWGの中心波長にも温度依 存性がある。**図2**を用いてAWGの温度依存性の原理について 説明する。今、温度が室温 (R.T.)の時、アレイ導波路を伝播し てきた光の等位相面はスラブ導波路端部の円弧状に沿った形で 形成され、中央の出力導波路に集光すると仮定する。ここで、 温度が室温 (R.T.)よりも大きくなった場合、アレイ導波路等 価屈折率 n_{eff} が大きくなり、結果としてアレイ導波路の位相差 ($2\pi/\lambda$)(ΔL) n_{eff} が大きくなる。ここで、 λ は中心波長、 ΔL は アレイ導波路における隣接導波路の光路長差である。アレイ導 波路の位相差が大きくなると、図に示すように等位相面が傾く。 光は等位相面に対して垂直に進む性質があるために、集光位置 がシフトする。すなわち、中央の出力導波路からは異なった波 長の光が出力され、波長シフトが生じる。

石英系ガラスで作製されたAWGの中心波長の温度依存性は 0.011 nm/℃であり、D-WDMシステムで使用するためには、 無視できない大きな値となっている。そのため、従来のAWG モジュールでは、ペルチェやヒータを搭載し、チップの温度を 一定に保持する必要があった。

Principle of temperature dependence

2.3 アサーマル化原理

我々は、このAWGの中心波長の温度依存性をペルチェや ヒータ無しで補償するために、次に示すアサーマル化原理を考 案した。図3(a)にそのアサーマルAWGの構造概略図を示す。 一方のスラブ導波路部分でAWGが回路ごと切断されており、 大片と小片に2分割されている。これらのチップは補償板であ る銅板に接続されている。温度が変化すると銅板が伸縮し、そ れに伴って小片をスライドさせることができる。図3(b)には 温度補償のメカニズムを模式的に示している。個々の図は出力 スラブ導波路部の模式図を示している。ここでは、図3(a)の 矢印で示されているように、光は(1)から入力され(2)に出力 される場合を考える。従来のAWGでは、温度が変化すると、 上述したAWGの温度依存性により集光位置がシフトする。す なわち、同一の出力導波路からは異なる波長の光が出力される。 一方、アサーマルAWGは、温度が変化すると集光位置は変化 するが、その変化した位置に銅板の伸縮によって出力導波路を 移動することができるため、同一の出力導波路から同一の波長 の光を取り出すことが可能となる。これがアサーマルAWGの 原理である。

Outline of Athermal AWG

2.4 アサーマルAWGの設計

上述したアサーマル化原理を用いて,精密に中心波長の温度 依存性を補償するためには,補償板である銅板長を調整する必 要がある。温度変化による中心波長シフトdルと位置補正量dx の間には次の関係がある。

$$dx = \frac{L_f \Delta L}{n_c d\lambda_s} n_g \frac{d\lambda}{dT} \Delta T \tag{1}$$

ここで、 L_f はスラブ導波路の長さ、 ΔL はアレイ導波路にお ける隣接導波路の光路長差、 n_s はスラブ導波路の実効屈折率、 n_g はアレイ導波路の群屈折率、dはアレイ導波路部における導 波路ピッチ、 λ_0 は中心波長、 ΔT は温度変化量である。この式(1) に**表1**の回路パラメータを代入すると、次式(2)を得る。

$$dx = 0.275 \Delta T$$

回路パラメータ

表1

この式 (2) は1℃あたり 0.275 mm 集光位置をシフトすることができれば、中心波長の温度依存性を補償することができることを意味する。銅板の線膨張係数は 1.7×10^{-5} であるため、銅板長は16.2 mmと計算される。

aromators for the AWC developed has

(2)

Circuit parameters for the Awo developed here	
Parameters	Values
Channel spacing	100 GHz
Number of channels	48
Relative refractive index difference	0.8%
Focal length of slab waveguide: $L_{\rm f}$	17.2 mm
Length difference of arrayed waveguide: ΔL	31.0 µm
Pitch of adjacent channel waveguides: d	13.75 μm
Diffraction order: <i>m</i>	29

2.5 中心波長補正技術

ー般に、AWGをD-WDMシステムで使用するためには、 AWGの中心波長はグリット波長に合わせ込まなければならない。我々は、アサーマル化の工程の中で、中心波長をグリット 波長に合わせ込む独自技術を開発した⁶⁾。これは、銅板をチッ プに固定する際に使用している接着剤の硬化温度を変化させる ことにより、中心波長を容易に変化させることができる技術で ある。図4に中心波長補正のフローチャートおよび作製プロセ スを示す。以下に、そのフローチャートに従い、中心波長補正 技術の手順を述べる。

はじめに,AWGチップを切断(アサーマル化)する前にその チップの中心波長を測定する。その測定値をもとにグリット波 長からのずれ量を計算し,硬化温度を算出する。その後,作製 プロセスに移行する。その作製プロセスは,大きく4つのプロ セスから成る。

プロセス1:AWGチップをベースプレートに仮固定し,その後,スラブ導波路部分でチップを2分割する。

プロセス2:接着剤を塗布した銅板をチップ上の所定の位 置にセットする。

プロセス3:チップ全体を算出された各々の硬化温度で均 ーに保ちながら接着剤を硬化させる。この時,温度によっ て銅板が伸長し,その長さを保ったままチップに接着固定 される。

プロセス4:チップの温度を室温に戻す。この時, 銅板の 収縮により,大片と小片の相対位置が変化する。すなわち, 導波路の位置が相対的に変化し,中心波長をシフトするこ とが可能となる。その後,ベースプレートからチップを取 り外す。

図4 中心波長補正のフローチャートおよび作製プロセス Flowchart for adjustment of the center wavelength and fabrication

続いて、硬化温度の算出方法について述べる。硬化温度は図 5に示される中心波長シフトと硬化温度との関係を用いて算出 している。この関係は直線で近似でき、その傾きは、AWGの 温度依存性である0.011 nm/℃にほぼ等しく、理論上一致して いる。例えば、分割する前に25℃で測定した中心波長とグリッ ド波長の差が0.4 nmであった場合は、硬化温度を63℃にすれ ばグリッド波長に合わせられることになる。その合わせ込み精 度は±20 pm以下を実現している。また、中心波長の合わせ 込み範囲は、約0.8 nmと非常に大きいため(従来の温度制御型 AWGの合わせ込み範囲は0.15 nm程度)、AWGチップ作製時 における中心波長の歩留まりを大きく向上することができる。 そのため、本波長補正技術は、低コスト化が見込めるといった メリットを有している。

図5 波長シフトと硬化温度との関係 Relationship between center wavelength shift and curing temperature

3. 低損失技術

今後,メトロ/アクセス系等でAWGが使用される領域を拡 張するためには、AWG自身の低損失化が必須である。そこで、 我々はAWGの低損失化の検討を行った。

3.1 AWGの損失原因と低損失化の手段

AWGの損失には伝搬損失,入出力導波路と光ファイバとの 接続損失の他に,回路に固有な損失であるモードフィールドミ スマッチ損失が存在する。我々は,AWGの低損失化を実現さ せるために,このモードフィールドミスマッチ損失低減の検討 を行うことにした。

図6(a)にモードフィールドミスマッチ損失の発生メカニズ ムを示す。AWGではスラブ導波路からアレイ導波路を励振す る際、スラブ導波路端では光電界分布は連続的であるが、アレ イ導波路に入った瞬間に離散化された光電界分布となる。この 時にモードフィールドミスマッチ損失が発生する。この発生し た損失は放射損失となってAWGの損失として観測される。す なわち、このモードフィールドミスマッチ損失で発生する放射 損失分を拾うことができれば、損失を低減することができる。 そこで、我々は図6(b)に示すような低損失回路パターンを配 置した⁷⁾。帯状導波路が、スラブ導波路に接続するアレイ導波 路部分にまたがるように配置されている。この帯状導波路は一 定のピッチAで配置されており、導波路の幅WBはスラブ導波 路から離れるに従い、徐々に減少している。これらのパラメー タはBPM (Beam Propagation Method)により最適化した。

図6 挿入損失の発生メカニズムと低損失回路パターン Mechanism for the generation of insertion loss and low loss pattern

3.2 BPMによるシミュレーション結果

次に、BPMによる損失特性の評価結果について説明する。 図7は、低損失回路パターンが無い従来の回路(a)の場合とパ ラメータ最適化後の低損失パターンを取り入れた回路(b)の場 合のシミュレーションの比較を示している。従来の回路の場合 (a)では、スラブ導波路を出た後に滑らかにアレイ導波路に接 続せず、かなりの放射損失が出ていることがわかる。一方、低 損失パターンを取り入れた回路(b)の場合、大きな放射損失は 認められなかった。各回路での放射損失を見積もると、(a)の 場合は0.70 dBであり、(b)の場合は0.17 dBであった。すなわ ち、この低損失パターンを用いることで、0.5 dB以上の低減効 果を持つことが分かった。AWGにはアレイ導波路とスラブ導 波路の接続部分が2箇所あるので、1.0 dB以上の低減効果を期 待できる。

図7 シミュレーション結果 Results of simulation by BPM

また, さらなる低損失化を実現するために, 入出力導波路パ ターンには図8に示すような同一のリニアテーパ導波路を配置 した。このねらいは, 入出射導波路でのモードフィールド径を 同じにし, 原理損失を抑えることにある。

4. 作製結果

上述の低損失パターンを導入し、FHD法、フォトリソグラ フィー、反応性イオンエッチングを組み合わせたPLC作製技 術で、100GHz-48chのAWGチップを作製した。その作製した チップをスラブ導波路部で切断し、上述の中心波長補正技術を 用いて中心波長をグリット波長に合わせ込み、アサーマル化を 行った。その後、AWGチップに光ファイバアレイを接続し、 パッケージングを行った。図9に作製したアサーマルAWGモ ジュールの外観写真を示す。パッケージサイズは130×80×8.5 (mm)と薄型化を実現した。

図9 100GHz-48chアサーマルAWGモジュールの外観図 Appearance of Athermal AWG module

図10に超低損失100GHz-48chアサーマルAWGのスペクト ラムを示す。挿入損失2.8 dB以下(1.8~2.8 dB),隣接クロス トーク-30 dB以下,非隣接クロストーク-30 dB以下,トー タルクロストーク-22 dB以下と非常に良好な光学特性が得ら れた。アサーマル化による光学特性の劣化は無かった。

図11に中心波長の温度依存性を示す。すべてのチャンネル で、中心波長変動は-5~70℃において±0.015 nmであり、 ほぼ完全にアサーマル化することができている。また、挿入損 失変動は±0.1 dB以下であった。図12にスペクトラムの温度 依存性を示す。いずれの温度においてもスペクトラムの劣化は 見られず、その他の光学特性も安定していることを確認した。

なお,信頼性に関しては,同一構造である100GHz-32ch温度 無依存AWGモジュールで確認している⁵⁾。

図11 中心波長の温度依存性 Temperature dependence of center wavelength

図12 スペクトラムの温度依存性 Temperature dependence of transmission spectrum

5. おわりに

我々は、アサーマル化技術および低損失化技術を用い、挿入損失2.8 dB以下の超低損失100GHz-48chアサーマルAWG モジュールを開発した。開発したモジュールは、-5~70℃ の温度範囲おいて、すべてのチャンネルで、中心波長変動 ±0.015 nm以下,挿入損失変動±0.1 dB以下を実現していた。 また、アサーマル化による光学特性の劣化はなかった。

参考文献

- 1) H.Tanobe, et al.: OFC' 97, ThM4,(1997), 298.
- 2) Bosc.D, et al. : Electron Lett. : **3P3**(1997), 134.
- 3) Y.Inoue, et al. : Electron Lett. : **33**(1997), 1945.
- 4) A.Kaneko, et al. : Electron Lett. : 36 (2000), 318.
- 5) 斎藤,他:古河電工時報,112号,(2003),26.
- 6) J.Hasegawa, et al. : NFOEC' 03 Tech. Pro., (2003), 801.
- 7) C.R.Doerr, et al. : IEEE Photon.Tech.Lett. : 13(2001), 329.