2.5% △石英系 PLC を用いた低接続損失可能な バーティカルスポットサイズ変換器 (SSC) の開発

Development of Vertical Spot Size Converter (SSC) with Low Coupling Loss Using 2.5%∆ Silica-Based Planar Lightwave Circuit

> 内田泰芳* 川島洋志* 奈良一孝* Yasuyoshi Uchida Hiroshi Kawashima Kazutaka Nara

概要 近年、PLC (planar lightwave circuit) 部品は小型化や低コスト化などの要求を受けて導波路 の高屈折率化の研究が行われている。これに伴い、我々は比屈折率差(Δ)が2.5%の石英系PLCの 開発を行っている。しかし、 Δ が2.5%のPLCはシングルモードファイバとの接続損失が2.9 dB/ facetと大きいため、このままでは実用化は難しい。そこで、接続損失を下げるためのSSC (spot size converter)の開発が必要である。そこで、今回我々はコアサイズを水平方向と垂直方向へ広げた 新しいバーティカルSSCを設計した。更に、PECVD (plasma enhanced chemical vapor deposition) とシャドウマスクを組み合わせてバーティカルSSCを作製し評価した。その結果、バー ティカルSSCを用いることで Δ が2.5%の導波路とシングルモードファイバとの接続損失が0.06 dB/facetまで大幅に低減できることを確認した。

1. はじめに

近年、光ネットワークの普及率の増加に伴いトラフィックが 増大しており,使用する光部品の小型化,低コスト化及び低消 費電力化が求められている。これに対応するために、石英系 PLC (planar lightwave circuit) 部品のクラッドとコアの比屈折 率差(A)を1.5%や2.0%に上げる研究が報告されている^{1),2)}。 PLC部品はAを大きくすることで曲率半径を小さくすることが できる。それにより、AWG (arrayed waveguide grating)な どの光ネットワーク部品を小型化できると同時に、1ウエハか らのチップの取り数が増えるためチップ1つあたりのコストを 抑えることができる。例えばム=0.8%のPLCでは曲率半径は 5000 µmであるが. Δを2.5%に上げると曲率半径は800 µmに なる。これにより約55 mm角のAWGチップは約15 mm角に 小型化できる³⁾。更に, DQPSK (differential quadrature phase shift keying) 復調器などの温度調節の必要な部品を小型化する ことで温度調節の必要な範囲を小さくできるため、必要な消費 電力を低減することができる。

しかし、Aを上げると光の閉じ込め効率が上がり、MFD (mode field diameter)が小さくなる。それにより、モードフィー ルドミスマッチが増大してファイバとの接続損失が増加する。 例えば、導波路とファイバとの接続損失はA=0.8%のPLCの時 は0.5 dB/facetであるが、 Δ =2.5%の時は2.9 dB/facetとなる。 このままでは接続損失が大きすぎて光部品として実用化できな い。そのため、接続損失を下げるためのSSC (spot size converter)が必要である。これまでにSSCとして図1のような水 平方向へのテーパ状に導波路幅を広げたものが報告されてい る⁴⁾。このSSCを用いると、 Δ =0.8%の時は接続損失を0.25 dB/ facetまで下げることができる。更に、 Δ =2.5%の時は1.5 dB/ facetまで低減できる。しかし、 Δ =2.5%のPLCを実用化するた めにはより接続損失を下げる必要がある。

より接続損失を低減させたSSCの例として、図2(a)に示す 狭幅テーパ導波路⁵⁾や、図2(b)に示すダブルコア狭幅テーパ 導波路⁶⁾が報告されている。これらは導波路幅を細くすること で光をコアから漏れさせて、MFDを拡大し、ファイバを接続 させている。これにより、ムが2.5%の導波路(以下では2.5%A 導波路と略記する。)とファイバとの接続をそれぞれ0.5 dB/ facet と 0.2 dB/facet に低減している。しかし、これらのSSCに は作製プロセスにおいて難点がある。例えば、狭幅テーパ導波 路はテーパと端面の距離を厳密に制御する必要がある。また、 ダブルコア狭幅テーパ導波路はムの異なるコアを2回成膜して それぞれ導波路形状に加工するため作製プロセスが複雑であ る。

今回,作製プロセスが容易で,かつ,ファイバとの接続損失 をより低減させたバーティカルSSCを2.5%Δ 導波路を用いて作 製した。その結果,ファイバとの接続損失を0.06 dB/facetま で大幅に低減することできたので報告する。

^{*} 研究開発本部 ファイテルフォトニクス研究所

図1 水平方向SSCの構造 Structure of horizontal SSC.

図2 SSCの研究例 Typical structures of SSCs studied.

2. バーティカルSSCの設計

2.1 SSCの構造設計

今回作製したSSCは、コアサイズを水平方向と垂直方向の両 方に広げるバーティカル構造を採用した。2.5%Δ導波路は通常だ とコアサイズが3.5 μm×3.5 μmであり、ファイバのコアサイズ と比べて小さい。そこで、導波路のコアサイズを広げることで MFDが大きくなり、モードフィールドミスマッチが小さくなる ため、ファイバとの接続損失を下げることができる。

作製する新バーティカルSSCの構造を図3に示す。まず、通常 の2.5%ム導波路のコアを水平方向ヘテーパ状にコア幅を広げ図3 の1st sectionを形成した。次に、垂直方向ヘテーパ状に高さを変 換して2nd sectionを形成した。この時、上方向のみにテーパ状 に広げて、基板のある下方向へは広げていないので導波路は非対 称な構造である。また、水平方向のテーパと垂直方向のテーパは 異なる作製プロセスとする必要がある。そのため、コアを水平方 向と垂直方向へ同時に広げた設計の場合、各方向のテーパの位置 が作製プロセスでずれが生じた時に縦長のコアが一時的にでき あがり形状が崩れる可能性がある。そこで、コアの大きさを水平 方向と垂直方向で別々の場所で広げることで、それぞれのテーパ の位置関係を厳密に制御する必要がなくなり作製が容易になる。 また、水平方向と垂直方向へコアを広げた後(すなわちモード フィールド変換後)の導波路形状は幅と高さが等しい正方形断面 とした。図3に幅は、Waveguide sizeとして示した。

図3 バーティカルSSCの構造 Structure of vertical SSC.

2.2 新バーティカルSSCのパラメータ設計

新バーティカルSSCの構造を作製するためには、モード フィールド変換後の導波路のサイズ (コアの幅と高さ)と垂直 方向のテーパ角θ (図3でTaper angleθ と表示)の2つのパラ メータが必要である。まず、モードフィールド変換後の導波路 サイズはファイバとの接続損失が最小となる値にすることが必 要である。次に、垂直方向のテーパ角θは高次モードを発生 させずにモードフィールドを単一モードのままに変換できる値 にする必要がある。

そこで第一に、モードフィールド変換後の導波路サイズを求 めた。ファイバと接続する導波路幅を変えた時の光の導波路伝搬 状態をBPM (beam propagation method) シミュレーションを行 い、伝搬後の光電界分布を求めてシングルモードファイバとの接 続損失を計算した。この時、モードフィールド変換後の導波路形 状は高さと幅が等しい矩形とした。計算結果を図4に示す。通常 の25%4 導波路幅の35 µmでは接続損失は29 dB/facetであるが、 導波路幅を広げていくと MFDがシングルモードファイバに近づ いていくためモードフィールドミスマッチが小さくなり接続損 失が下がる。図4より導波路幅が125 µmの時に接続損失が最小 となり、値は0.06 dB/facetである。更に導波路幅を広げると MFDがファイバよりも大きくなるため、再びモードフィールド ミスマッチが大きくなり接続損失が上昇する。よって、モード フィールド変換後の導波路幅はファイバとの接続損失が最小と なる125 µmとした。

図4 導波路幅とファイバとの接続損失の関係 Relationship between waveguide width and calculated coupling loss.

次に、垂直方向へモードフィールドを変換する時のテーパ角 θ を求めた。BPMにより角度を変えた時の導波路伝搬状態の 変化をシミュレーションした。この時、導波路形状は図3のよ うに上方向にのみテーパ状に広げた形状とした。伝搬状態のシ ミュレーション結果を図5に示す。 $\theta = 0.4^{\circ} \approx \theta = 1.0^{\circ}$ では断熱 的にモードフィールドを変換できているのに対して、 $\theta = 2.0^{\circ}$ では高次モードが発生していることが分かる。

図5 テーパ角と導波路伝搬シミュレーション結果の関係 Relationship between taper angle and simulated results of propagation.

次いで、シミュレーション結果から過剰損失を算出した。その結果を図6に示す。 $\theta < 1.0^{\circ}$ では過剰損失はほとんど変化してないが、 $\theta > 1.0^{\circ}$ では過剰損失が増大している。よって、垂直方向へのテーパ角は $\theta < 1.0^{\circ}$ が適当である。一方、テーパ角を小さくするとテーパ長が長くなるため、SSCチップ全体のサイズも長くなる。そこで今回は、チップサイズと製造プロセスでのばらつきも考慮して $\theta = 0.6^{\circ}$ とした。

3. バーティカルテーパ作製プロセスの開発

バーティカルSSCをPECVD (plasma enhanced chemical vapor deposition) と RIE (reactive ion etching) を用いてシリコ ン基板上に形成した。この時、垂直方向へのテーパ形成は図7 のフローに示すようにPECVDとシャドウマスクを用いて2段 階に分けて作製した。まず、通常の導波路高さの分だけの1st coreを成膜した。次に、PECVDに基板とマスクの間にGap D を持たせたシャドウマスクを組み合わせて、モードフィールド 変換後の導波路高さまで2nd coreを成膜した。この時,シャ ドウマスクと基板の間にGap Dが無い場合、シャドウマスクの 下は2nd coreは成膜されずに1st coreの膜厚になり、シャドウ マスクの無い部分は2nd coreを重ねた膜厚になる。しかし、 今回は基板とシャドウマスクの間にGap Dを持たせたので、 図7(b)の詳細図である図8のようにPECVD成膜工程で基板と シャドウマスクの間へ原料が流れ込み、シャドウマスクの端で 膜厚に緩やかな段差が形成される⁷⁾。垂直方向へのテーパはこ の緩やかな段差を使用した。その後、通常のPLC作製工程と 同様にフォトリソグラフィーとRIEにより水平方向のテーパを 含む平面回路パターンを作製して、最後に火炎堆積法(FHD) を用いてオーバークラッドを堆積しコアの埋め込みを行った。

図7 バーティカル SSC の作製手順 Manufacturing process of vertical SSC.

図8 シャドウマスクを用いた時のPECVD工程 PECVD process using shadow mask.

続いて、2nd coreの成膜時において基板とシャドウマスク間 のギャプ長D(Gap D)を変化させた時のテーパの形状(テーパ 長と膜厚の関係)を図9に示す。図9のTaper angle θ とは、 テーパの最大傾斜角と定義した。D=0.6 mmではTaper length=6 mm、 θ =0.6°、D=1.2 mmではTaper length=9 mm、 θ =0.3° となる。つまり、Gap Dを広げるとテーパ角は小さく なるが、テーパ長は長くなる。ここで、設計した θ は θ =0.6° であるので、Gap はD=0.6 mmとした。

図9 垂直方向テーパの形状 Taper shape in vertical cross-section.

4. バーティカルSSCの作製

これまでに求めた条件を用いてバーティカルSSCを作製した。まず、Si基板上にPECVDとシャドウマスクを用いてΔが 2.5%のコアのバーティカル構造を作製した。次に、フォトリ ソグラフィーとRIEを用いてバーティカルSSCを作製した。こ の時、水平方向のテーパと垂直方向のテーパは図3の位置関係 とした。最後に、FHDを用いてSSCコアの埋め込みを行った。

5. 作製結果

作製したバーティカルSSCは図3のように2.5%Δ 導波路と接続するモードフィールド変換前の端面と、シングルモードファ イバと接続するモードフィールド変換後の端面を持つ。それら の端面形状を光学顕微鏡で観察した。写真を図10に示す。それ ぞれのコアサイズは、3.8 μm×3.5 μmの矩形と12.8 μm×13.0 μmの矩形となり、ほぼ設計した通りのサイズに作製できた。

(a) モードフィールド変換前のコア

(b)モードフィールド変換後のコア

図10 バーティカルSSCの端面形状写真 Photos of vertical SSC cores on both ends.

バーティカルSSCのモードフィールド変換前の端面から光 を入射して、モードフィールド変換後の端面から出射される光 のNear field pattern測定を行い、スポットサイズを確認した。 更に、比較として通常の2.5%ム導波路を用いて測定し、通常サ イズのコアから出射される光を測定した。Near field pattern 測定結果を図11に示す。図11(a)の写真はモードフィールド 変換前の2.5%ム導波路のコアから出射された光の測定結果で、 MFDは約5 µmである。図11(b)の写真はモードフィールド変 換前の端面から光を入射してバーティカルSSCを通してモー ドフィールド変換後のコアから出射された光の測定結果で、 MFDは約11 µmである。これより、作製したバーティカル SSCを用いてMFDを5 µmから11 µmに変換できた。また、 形状が円状のまま変化していないことから単一モードのままに モードフィールドを変換できていると考えられる。

また、図12はシングルモードファイバから出射された光の

Near field pattern 測定結果である。これもMFDは約11 µmに なっており、バーティカルSSCを通して変換されたものとサ イズと形状が同じである。以上より、作製したバーティカル SSCは2.5%A 導波路のMFDをシングルモードファイバのMFD まで変換できたことが確認できる。

(a) モードフィールド変換前のコア

(b) モードフィールド変換後のコア

図11 バーティカルSSCのNear field pattern測定結果 Measurement results of near field pattern of vertical SSC.

図12 シングルモードファイバのNear field pattern 測定結果 Near field pattern of SMF.

続いて、作製したバーティカルSSCとシングルモードファイ バとの接続損失を求めた。まず、バーティカルSSCを持つ導波 路チップの波長1550 nmにおける挿入損失を測定し、そこから 2.5%Δ導波路の伝搬損失を差し引いてシングルモードファイバ との接続損失を求めた。比較として、水平方向SSCのみとSSC 無し(2.5%Δ導波路のみ)での接続損失を合わせて図13に示す。 SSC無しの場合、接続損失は 2.9 dB/facetであり、水平方向 SSCを用いた場合、接続損失は 1.5 dB/facetである。そして、 今回作製したバーティカルSSCを用いた場合、接続損失は0.06 dB/facetまで大幅に低減することができた。

図13 SSCを用いた時のファイバとの接続損失 Coupling loss with SMF when SSC is used.

6. おわりに

コアサイズを水平方向と垂直方向へテーパで拡大した新規 SSCの構造を設計した。

PECVDとシャドウマスクを組み合わせて成膜することにより、2.5%4 導波路で垂直方向へのテーパを作製した。

作製したバーティカルSSCのNear field pattern測定より, 2.5%A 導波路のMFDをSMファイバのMFDまで変換している ことを確認した。更に,このバーティカルSSCを用いること で2.5%A 導波路とファイバとの接続損失を0.06 dB/facetまで 低減することができた。

参考文献

- Y. Hibino, Y. Hida, A. Kaneko, M. Ishii, M. Itoh, T. Goh, A. Sugita, T. Saida, A. Himeno, and Y. Ohmori: "Fabrication of silica-on-Si waveguide with higher index difference and its application to 256 channel arrayed-waveguide multi/ demultiplexer," Optical Fiber Communication Conf. (OFC 2000), (2000), WH2 127.
- T. Shimoda, K. Suzuki, S. Takaesu, M. Horie, and A. Furukawa: "A Low-Loss, Compact Wide-FSR-AWG Using SiON Planar lightwave circuit Technology," Optical Fiber Communication Conf. (OFC 2003), (2003), FJ1 703.
- 3) 丸浩一,石川弘,駒野晴保,北野延明,阿部由紀雄,松井研輔, 樫村誠一,上塚尚登: "2.5%-Δ超小型アレイ導波路型光合分波器," 電子情報通信学会2004年総合大会,(2004), C-3-75.
- 内田泰芳,長谷川淳一,酒井辰浩,佐藤直樹,奈良一孝:"小型 アサーマルAWGモジュールの開発,"電子情報通信学会2009年 総合大会,(2009), C-3-36.
- 5) 水野隆之,鬼頭勤,才田隆志,井藤幹隆: "狭テーバ構造を用い たスポットサイズ変換器の導波路Δ依存性,"電子情報通信学会 2003年総合大会,(2003), C-3-73.
- 6) 渡辺啓,那須悠介,神徳正樹,井藤幹隆,井上晴之: "超高ム導 波路ダブルコアスポットサイズ変換器," 電子情報通信学会2003 年エレクトロンソサイエティ大会,(2003), C-3-89
- N. Yamaguchi, Y. Kokubun and K. Sato: "Low-Loss Spot-Size Transformer by Dual Tapered Waveguides (DTW-SST)," Journal of Lightwave Technology, 29 (1990), 587