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1. INTRODUCTION

Because of the rapid popularization of start-stop system 
etc, the necessity for accurate automotive battery state 
sensing is increasing these days. In addition, the conven-
tional technique of managing only the amount of power 
out of the battery by using a current sensor is no longer 
enough and a high functionality sensor which can detect 
the battery charge level and the degradation state in addi-
tion to the direct measurement values of such as current, 
voltage and temperature, are becoming a requirement. 
The development of the above described sensor was ear-
lier promoted by German manufacturers such as Bosch, 
Hella and has started to be implemented in European 
vehicles since 2007 approximately. In case of Japanese 
car manufacturers, Honda started to equip with the Bosch 
made sensor in 2010.  Furukawa Electric (FEC) has been 
in a position to be able to share knowledge with The 
Furukawa Battery Co., Ltd., and has been developing 
technology related to battery state since around 2000. 
From 2005, the development has focused on the similar 
in-vehicle sensor. As a result, the developed in-vehicle 
sensor was adapted, for the first time to Japanese car 
manufacturers in the HONDA ACCORD launched in North 
America on Sept. 19th 2012. Figure1 shows an example.

The typical technology developed by FEC is the tech-
nology to detect OCV, which is an index to estimate the 
State of Charge (SOC), in a short time using a higher 
order exponential function. The bases of this technology 
was reported in Furukawa Denkou Jihou No.1201), (in 
Japanese). This technology can estimate OCV in a short-
er time and with a higher accuracy in comparison to the 
conventional method, on the other hand a very high com-
putational effort was required. Computational effort reduc-
tion was the issue for the in-vehicle sensor which has limi-
tation in cost and dimension. 

Until this point, prioritizing the certainty of the calcula-
tion, the development using mainly the least–squares 
method based on Levenberg-Marquardt method2) which 
requires a high computational effort. The sensor for 
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Figure 1 Furukawa Electric “Battery State Sensor”.
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HONDA ACCORD, described before, based on this meth-
od. Meanwhile, (expanded) Kalman-filter method3) is 
known to be used for the same purpose with less compu-
tational effort and, simple trial usage result has been 
reported in Furukawa Denkou Jihou No.120, (in Japanese). 
Here, full-fledged verification result of the capability for the 
Kalman-filter method is reported.

2. EQUILIBRIUM POTENTIAL OCV OF 
LEAD-ACID BATTERIES AND ITS 
RELAXATION BEHAVIOR

The formula (1) shows chemical changes associated with 
charging and discharging of the battery.

Pb+ PbO2+2H2SO4 ⇔ 2PbSO4+2H2O (1)

The left-hand side of the formula (1) indicates the dis-
charging and the right –hand side indicates the charging. 
Here, the important issue is as follow. As a peculiar fea-
ture of lead-acid batteries, in its progress of discharging 
the sulfuric acid in the electrolyte is consumed and is 
replaced by water and the sulfuric density is changed. 
This shows that the electrolyte concentration can be a 
direct index to express the battery charging rate. 
Meanwhile, the equilibrium potential in oxidation-reduc-
tion reaction is expressed by Nernst equation4) based on 
the thermodynamic equilibrium by using the activity of 
chemical elements for the reaction. Nernst equation for 
the lead-acid battery is shown in the formula (2).

E=E0+(RT/F) · ln(aH+· aHSO4
-/aH2O) (2)

E0 : Standard electrode potential R : Gas constant
T : Temperature F : Faraday constant
H+: Hydrogen ion activity
aH2SO4

- : Sulfuric acid ion activity
aH2O : Water activity

Activity means the proportion of each molecule occu-
pied in the total number of molecules, and the mole frac-
tion is used normally. E0 is referred to as the standard 
electrode potential1) and correspond to the case in which 
the activity of all the chemical elements is defined as 1 in 
the previously described Nernst equation. The value is 
calculated uniquely from Gibbs standard free energy of 
formation. In case of the lead-acid battery, the value is 
approximately 1.93 V4) which can be considered a con-
stant. 

From the above facts, the battery charge level is 
expressed by the electrolyte concentration and the elec-
tromotive force of the batteries (in other words, the com-
pletely stable OCV without unhomogeneity in the electro-
lyte) can be expressed by mole fraction (≒electrolyte 
concentration). In other words, the battery electromotive 
force can be an index to estimate the battery charge level.

This idea of associating the OCV with the battery 

charge level of the lead-acid battery has been widely 
used as a very common method. But, there was a difficult 
problem to adapt to an application such as an automotive 
battery. Because, the charge and the discharge current 
always flows in driving the automobile, and even the bat-
tery voltage converges to stable OCV after the vehicle 
stops, the unhomogeneity of the electrolyte generated in 
a dynamic environment takes very long time such as ten 
and multiple tens of hours to eliminate this influence. In 
case of an automobile, the resting period of the automo-
bile is different from drivers and from time to time condi-
tion. And we can not avoid saying that ensuring the stable 
and sufficient resting period is extremely difficult.

Figure 2 shows 86,400 s=24 hrs of the battery voltage 
behavior observation result. The battery voltage, which 
has received charging over-voltage, leads to a stable 
OCV, under the severe condition of -20℃. AS this observa-
tion result shows, depending on the temperature, the bat-
tery voltage does not reach the stable OCV even after 24 
hrs.

3. FUNCTION TABLE OF RELAXATION 
VEHAVIOR OF OVER-VOLTAGE

We considered a method to predict the stable OCV from 
the short resting period that can be secured from a stable 
condition of the vehicle. The method expresses the relax-
ation behavior of over-voltage as a function of time and 
predicts the stable OCV as the convergence of voltage at 
an infinite time of this function. This study was conducted; 
and as a result, we have managed to obtain the expected 
results in 5-dimensional exponential function. This has 
been reported in Furukawa Denkou Jihou No.120, (in 
Japanese). The formula (3) represents the general formu-
la of the 5th-order exponential decay function.

y＝f (x)
 ＝y0＋a1·exp(b1·x)＋a2·exp(b2·x)
  ＋a3·exp(b3·x)＋a4·exp(b4·x)＋a5·exp(b5·x) (3)
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Figure 2 Relaxation of charging over-voltage.
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The relaxation behavior of the over-voltage shown in 
Figure 2 was fit to a function by using the data analysis 
software on the market OriginPro7.5J. From Figure 3, it is 
clear that the higher the exponential dimension, the clos-
er the function becomes to the measurement. The corre-
lation coefficient R2 of the 5-dimentional exponential func-
tion reaches 0.99998, and we can say that a good result 
obtained explains the behavior almost completely.

4. THE LEAST-SQARES METHOD AND 
THE KALMAN-FILTER CALCULATION

To adapt the above-mentioned knowledge for the predic-
tion of the stable OCV, which is our objective, the relax-
ation behavior of the over-voltage shall be measured by 
in-vehicle a battery state detection sensor and the sensor 
is required to perform the similar curve fitting from the 
above mentioned OriginPro7.5. The least-squares calcu-
lation by the Levenberg-Marquardt method is used in the 
curve fitting engine of OriginPro7.5. The basic idea of the 
least-squares method is intended to obtain a minimum 
solution of a sum of squared deviation between mea-
sured data Yn and function value f (Xn) as shown in the 
formula (4).

   (4)

In case of the 5-dimentional exponential function, which 
is targeted in this study, solving the formula (4) means to 
solve the following 11 simultaneous equations (5) which 
correspond to 11 coefficients included in the formula (3).

   (5)

This type of nonlinear simultaneous equation does not 
have analysis solving method, except for a special excep-
tion. Iteration calculation, which gradually approaches the 
optimal solution from an initial value of an assumed solu-
tion, is a practical solving method. The Levenverg-
Marqardt method is used most widely in these days for 
this iteration calculation. The general formula for updating 
the solution by the Levenberg-Marquardt method is 
shown in the formula (6).

   (6)

Here, u(k) is the vector of the coefficient to be obtained 
and the updating is repeated until the solution converges 
to the optimum value. Hu

(k) is the Hessian matrix, and a 
calculation formula is shown in the next formula (7). In 
this example, this is a matrix with 11x11 elements, 
11x11matrix elements are calculated by partial differentia-
tion in accordance with the 1 to N of individually obtained 
data and all of those are added.

   (7)

D[Hu
(k)] can be obtained easily by extracting only the 

diagonal elements, by completing the calculation of Hu
(k). 

But, an inverse matrix of Hu
(k)+cD[Hu

(k)] which is the sum-
mation of both matrixes is obtained. The calculation of 
this inverse matrix is not easy. It is necessary to solve a 
simultaneous equation by using a high computational 
effort method such as the Gauss-Jordan method etc. 
∇uJ(k) is a gradient and calculating formula is explained by 
the formula (8). This is also a vector with 11 elements 
including partial differentiation. 
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Figure 3 Results of high order exponential functions (72h).
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   (8)

Partial differential value of 11x11 elements for each 
observed data of the N shall be calculated and added 
together, and perform an inverse matrix calculation for the 
finally summed matrix of 11x11. Further more, the above 
calculation is repeated until a solution converges to the 
optimum value. As described, the Levenberg-Marquardt 
method is a very severe calculation to implement to the 
in-vehicle sensor which has a limitation in the manufactur-
ing cost and the product dimension.  

Meanwhile, the Kalman-filter calculation is well known 
as requiring much less computational effort method 
which can be adapted to the optimum coefficient estima-
tion similar to the Levenberg-Marquardt method. The 
Kalman-filter calculation method was proposed by 
Hungarian-American Rudolf Kalman and used for the 
rocket orbital calculation of the Apollo program. This is 
the famous technology that contributed to the successful 
landing on the moon in Apollo 11. Currently, this method 
is widely used as the basic technology for the airplane 
automatic navigation and the car navigation systems. 
Initially, the filter theory proposed by Rudolf Kalman could 
only be adapted to the linear system (linear Kalman filter), 
and could not be adapted to non-linear system such as 
exponential function. In Furukawa Denkou Jihou No.120, 
(in Japanese), the linear Kalman-filter was simplified to be 
able to be used with assumption that power coefficients 
of exponential function can be calculated individually, and 
possible to be treated as constants in a function fitting, 
and the trial proceeded. The filter was improved to the 
expanded Kalman-filter which could be adapted to a non-
linear system by Stanley Schmidt in NASA, in the stages 
of the Apollo program application. Nowadays, the filter is 
used more widely. Here, we tried to optimize all the coeffi-
cient of the high-order exponential function by using the 
expanded Kalman-filter. The general formula of the 
expanded Kalman-filter is shown in the following.

One step forward estimation: 

   (9)

Jacoby matrix calculation:

   (10)

Filtering calculation:

   (11)

When observed value yn can be represented by the for-
mula (12) with the state vector, and the state vector xn is in 
space state representation as shown in the formula (13),

yn＝h(xn) (12)
xn＝f (xn-1) (13)

The purpose of this calculation is to proceed filtering (= 
optimization of state vectors) by using the formula (10) 
(11) for more optimum prediction with further observation 
by proceeding the one-step forward estimation using the 
formula (9). 

Similar to the least-squares method, an initial value 
shall be set prior to the calculation starting; the largest dif-
ference is as follow. In case of the least-squares method, 
the N predetermined observation data shall be arranged 
and the optimization starts at the time of the buffering 
completion for all the data, but the Kalman-filter method 
proceeds the optimization at each observation procedure. 
In other words, the Kalman-filter method, in principle, 
does not need k repetition, and the buffers for observa-
tion data from 1 to N are not necessary. This method is 
the infinite response filter that is not subjected to restric-
tion of N. 

In comparison to the computational effort, the strict 
comparison is not possible since the computational effort 
is greatly different depending on the number of repetition 
k until convergence. With assumption that from 30 to 50 
repetition is required, if optimization is completed by a set 
of learning from 1 to N that is the same observation num-
ber of the least-squares method, about two digits of com-
putational effort reduction can be expected. 

As a matter of fact, the least-squares method has excel-
lent components. The least-squares method is superior in 
reliability and robustness as it can reach the optimum 
value more certainly. But, if the same accuracy of calcula-
tion is obtained by the Kalman-filter method, a significant 
reduction of computational effort can be expected as 
described above.

：Input vector

：Observation noise

：System noise

：Kalman gain

：Covariance matrix

：Jacoby matrix of observed model

：Jacoby matrix in time evolution model
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5. APPLICATION OF THE KALMAN-FILTER 
TO THE EXPORNENTIAL CURVE FIT-
TING

When applying the expanded Kalman-filter to the expo-
nential curve fitting, the formula (3) of the continuity func-
tion is rewritten to the discrete-time representation by 
using sampling interval (observation interval) dt as shown 
in the formula (14), this treatment is the same for the 
least-squares method. 

f (n)＝Y0＋A1·exp(－dt·n/T1)＋A2·exp(－dt·n/T2)＋
 A3·exp(－dt·n/T3)＋A4·exp(－dt·n/T4)＋
 A5·exp(－dt·n/T5) (14)

The state vector xn is set as follow for convenience to 
calculate.

xn
T ＝(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11)

 ＝(A1, A2, A3, A4, A5, exp(－dt/T1,) 
  exp(－dt/T2), exp(－dt/T3), exp(－dt/T4),
  exp(－dt/T5), Y0) (15)

With these treatments, one-step forward estimation of xn 
can be simplified a lot as there is no input for this calcula-
tion, and computational effort can be significantly 
reduced. 

   (16)

Here, observation value yn can be expressed by the for-
mula (17).

   (17)

Based on the above established formulae, we tried to 
verify the adequacy of the expanded Kalmen-filter by per-
forming the exponential curve fitting with the expanded 
Kalman-filer method. The result was compared with the 
calculation by the Levenberg-Marquardt method under 
the same condition.

6. COMPARISON OF THE CALCULATION 
RESULT OF THE LEAST-SQUARES 
METHOD AND THE KALMAN-FILTER

In making comparative verification of the calculation 
results of the least-squares method and with those of the 
Kalman-filter, next relaxation data of over-voltage dt=20 s 
and N=901 (total 18,000 s=5 hrs) are as shown in figure 
4. 

The least-squares method that serves as a reference for 
comparison used data analysis software on the market 
OriginPro8.5 implementing the Levenberg-Marquardt 
method.

The learning result by OriginPro8.5 is shown in Table 1.

In performing the expanded Kalmen-filter calculation, 
our self-made tool uses Excel and VBA macro programs. 
Both the least-squares method and the Kalman- filter 
have initial value dependence in calculation results. In this 
verification, following initial values are set, A1=0.3, 
A2=0.3, A3=0.3, A4=0.3, A5=0.3, T1=10, T2=100, 
T3=100, T4=1000, T5=10000, Y0=135. At first, as a 
straightforward way, the calculation result of one series of 
observation, started from n=1 to n=901 is shown in Table 
2. 

Comparing Table1 and Table 2, it is difficult to say that 
similar results were obtained. To see the optimization 
progress in the process of observation, changes in Y0, 
which is the coefficient to represent OCV, is shown in 
Figure 5.

A1 A2 A3 A4 A5 T1 T2 T3 T4 T5 Y0

Optimization 
coefficient 0.18237 0.4074 0.58806 0.34749 0.36972 55.83597 352.1912 1985.511 1985.694 11750.23 13.07268

Table 1 Result of least square fitting.

A1 A2 A3 A4 A5 T1 T2 T3 T4 T5 Y0

Optimization 
coefficient 0.243151 0.537924 0.477655 0.551855 0.125053 63.86299 423.646 4190.568 5308.926 6181.159 13.12579

Table 2 Result of Kalman-filter without iteration.
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From Figure 5, unfortunately in 5 hours of observation 
from n=1 to 901, T0 is still in the process of value chang-
ing and not converged yet. As a matter of fact, with longer 
time of learning the calculation result goes towards the 
convergence, 5 hours of learning is almost the limit of the 
stable secured time for vehicles. From the original objec-
tive point of view, the stable OCV prediction in a short 
while, a longer time of observation than this time is not 
realistic any more. As a result of survey to find out the 
problem solving method, we have reached to the study 
used in the construction field. The optimization study for 
the full elastic-plastic spring approximation model of the 
ground in rapid loading test of piles, after N-th of the last 
filtering completion, the return to the initial observation 
value by using the obtained optimum values as the initial 
value, and repeat the calculation like the least-squares 
method5). This method kills the original feature of the infi-
nite response filter which does no require buffering of the 
observed value. Also computational effort is increased. 
Even computational effort is significantly increased by the 
repetition of k; we decided to carry out the similar calcula-
tion considering that the most important thing is to see if 
the aimed curve fitting can be successfully performed by 
using the Kalman-filter. In the former study, the method to 
increase the covariance matrix by 20 times was taken at 
the repetition to return to the initial observation point. We 
repeated this treatment. The study result is shown in 
Figure 6 as the change followed to the repetitive calcula-
tion of Y0. 

AS shown in Figure 6, Y0 converged by repeating calcu-
lation for 70 to 80 times. But, the feature of the Kalman-
filter, infinite response filter, was broken. Furthermore, the 
effect of computational effort reduction would almost van-
ish because of the 70 to 80 times of repetitive calcula-
tions. Further consideration was made looking for an 
improvement method and the influence by a linear simpli-
fication in the sampling of the discrete-time interval of the 
expanded Kalman-filter. The image of the linear simplifica-
tion in the expanded Kalman-filter is shown in Figure 7.

Even in a non-linear system, to explain behaviors in the 
short enough time dt, the linear simplification (Taylor 
series simplification of the primary) is possible as shown 
in Figure 7; this is widely used in general engineering 
field. The expanded Kalman- filter uses this method as 
well. In other words, the expanded Kalman-filter is the cal-
culation method which can be satisfied only in the short 
enough sampling interval that satisfies the above simplifi-
cation. Then, the shorter the sampling interval the less the 
linear simplification error, but the computational effort is 
increased as a matter of fact because of the increment in 
the observation points. And this would defy the purpose. 
The degree of error generated by the sampling interval for 
primary exponential function X(n)=exp(-dt · n/T0) is 
shown in Table 3, as an example. 

As shown in Table 3, the linear simplification error of the 
exponential function can be calculated uniquely as a ratio 
to the power. The sampling interval dt of this study is 20 s. 
On the other hand, the smallest power coefficient T1 of 
the optimization coefficient is 55.83597, this makes 
dt=T1/2.791799 by the expression according to Table 3, 

dt

T0 T0/2 T0/5 T0/10

Error 0.37×X(n) 0.107×X(n) 0.019×X(n) 0.005×X(n)

Table 3 Error caused by linear simplification.
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and we can see that close to 10% of error is generated. 
The feature of the Kalman-filter is established based on 
the assumption that the distribution of the error follows a 
Gaussian distribution in consideration of the influence of 
the error. But, in this case, the absolute value is large and 
in addition the above written error does not follow the 
Gaussian distribution. Meanwhile, in this case, the error 
caused from the power coefficient can be calculated as 
shown above Table 3. Here, we made the following trial 
for convergence improvement. The predictive calculation 
of the error was calculated from the power coefficient in 
the learning process. And the influenced part was sub-
tracted by the observed noise. 

In addition to the above matter, based on the 5 hours of 
data that was used this time, it was suggested that the 
5th-order exponential decay function is in over-fitting 
because of  the excessive number of terms, as T3 and T4 
have the same number in the learning result of the least-
squares method shown in Table 1. So, the change to the 
4th-order exponential decay function was made together 
with the reduction of the number of terms. The recalcula-
tion result based on the above written two improvements 
is shown in Figure 8 and Table 4.

As shown in Figure 8, the learned value of Y0 is mostly 
converging by about 20 times of repetitive calculation; a 
significant repetition number reduction effect was 
obtained in comparison to Figure 6. With this degree of 
repetition number, a meaningful computational effort 
reduction is expected in comparison to the least-squares 
method. Furthermore, as shown in Table 4, the learned 
value of each coefficient was obtained as almost the 
same value of the calculated result by the least-squares 

method. We consider that meaningfulness of the Kalman-
filter calculation was confirmed as an optimized value as 
well. 

7. CONCLUSION

In this report, we confirmed the effectiveness of the 
expanded Kalman-filter method as one mathematical 
method for purely curve fitting, and showed that the 
expanded Kalman-filter method can function as an effec-
tive tool by adding some ingenuity and improvement in 
the application. As a matter of fact, this study is not the 
final and we believe still there is room for improvement 
and optimization. 

This is the same for the least-squares method, enough 
studies are necessary not only from a point of view of 
computational effort, but also from a stability in calcula-
tion of results. 

Both the least-squares method and the Kalman-filter 
method have in common a dependence on the initial val-
ues of the solution, to be set at the beginning of the cal-
culation, in the computational effort and stability. Of 
course, it is more advantageous when the initial values 
are closer to the optimum solution. In this study, the initial 
values were initially fixed, but initial value setting is a very 
important subject in the actual algorithm. 

In addition, tools for curve fitting and coefficient optimi-
zation have been studied by many researchers on a daily 
bases, and many methods have been devised and pro-
posed. We believe, it is very important to absorb and 
adopt these techniques widely for the establishment of an 
ideal algorithm.
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Figure 8 Optimization of Y0 in the modified calculation.

A1 A2 A3 A4 T1 T2 T3 T4 Y0

Least- squares 
method 0.18237 0.4076 0.93555 0.36972 55.83597 352.1912 1985.579 11750.23 13.07268

Kalman-filter 0.304729 0.456292 0.950762 0.381907 31.15547 302.3189 1909.384 10775.69 13.08112

Table 4 Comparison of fitted coefficients of exponential 
function.


