高出力光アンプの開発

Development of High Power Optical Amplifier

田代至男^{*} 小柳 諭^{*2} 相曽景一^{*3} Yoshio Tashiro Satoshi Koyanagi Keiichi Aiso

田中完二^{*} Kanji Tanaka 並木 周

概 要 近年の高密度波長多重(D-WDM: Dense Wavelength Division-Multiplex)伝送技術の 発展・実用化に伴い,それらに用いる光増幅器,特にエルビウム添加光ファイバ増幅器 EDFA: Erbium-Doped Fiber Amplifier)にも更に高い特性が求められている。本報告では1480nm帯域の半導体レー ザーを3波長多重して得られた高出力励起光源を用いて,1.5Wの信号出力を達成した高出力EDFAに ついて報告する。

1. はじめに

近年の高密度波長多重(D-WDM: Dense Wavelength Division-Multiplex)伝送技術の発展・実用化に伴い,それらに用い る光増幅器,特に最も実用化が進んでいるエルビウム添加光 ファイバ増幅器(EDFA: Erbium-Doped Fiber Amplifier)にも 更に高い出力が求められている。その理由は,信号光の多重度の 増加に伴いトータルの光強度が増加すると,同じ利得を得るた めにEDFAの高出力化が必要となるからである。それ以外にも 高出力EDFAの用途として期待されるものに高出力増幅器によ る無中継伝送¹⁾,衛星間光通信²⁾,ファイバ内の非線形効果を用 いた光信号処理³⁾などがある。

Wattクラスを越える高出力EDFAの実現方法としては,励起 波長として980nm帯を用いるか1480nm帯を用いるかによっ て大きく二つに分類される。前者の場合,Erイオンの励起準位 に対応する吸収帯の半値全幅(FWHM:Full Width at Half Maximum)が978nmを中心として16nm程度と狭いことが特 徴である。また,信号波長帯である1530nm-1580nmとのエネ ルギーレベルの差が大きいので,励起光から信号光への量子変 換効率が60%程度に限られる。この低い効率を補うため,より 高出力の励起光源が必要とされる。

この問題の解決のために Yb(Ytterbium)を共添加した EDF (Erbium-Doped Fiber)が用いられる。Ybイオンは広い吸収帯 (800nm-1100nm を持ち,イオン間相互作用により,励起され たYbイオンからErイオンヘエネルギー伝達が起こるので,共 添加によりErイオンを間接的に励起することが可能である。励 起波長帯が広くなることで,例えば800nm GaAs半導体レーザ で励起した1064nmのNd-YAGレーザ⁵のような高出力励起光 源が使用可能となるため,低い量子変換効率を補うことができ る。更に,Er,Ybを添加したコアと,第一,第二クラッドから なり,第一クラッドが励起光をマルチ横モードで伝搬し,コアが 信号光をシングルモードで伝搬させるダブルクラッドファイバ を用いて,マルチ横モードを有する高出力980nm半導体レーザ⁴⁾ で励起することにより高出力を得る方法も,盛んに研究されて いる⁶。

一方,1480nm帯を励起波長とする利点は以下の2点である。 (1)励起波長帯が信号波長帯と近いため,90%以上の高い量子 変換効率が得られること。(2)1450nm-1500nmまでの50nmを 励起波長帯として使用できるため,励起光を波長多重して合波 することが容易なことである。欠点はErイオンの1480nm帯で も誘導放出がおこるため完全な反転分布を生成することができ ないので,980nm帯で励起する場合に比べて雑音特性に劣るこ とが挙げられる。しかしこの欠点は980nm励起したEDFAを 前置増幅器とする2ステージ型のEDFAを構成することで改善 できる⁷。

1480nm帯の励起光源を高出力化する方法としては1480nm 半導体レーザの波長合波,偏波合成⁸⁾を利用するものが知られ ている。最近ではラマン増幅とファイバレーザを組み合わせた カスケードラマンレーザ⁹⁾が報告されている。筆者らのグルー プでは1480nm半導体レーザを励起光源として用いた高出力 EDFAの研究開発¹⁰⁾を進めており,最近1.5Wの信号出力を有 する高出力EDFA¹¹⁾を開発した。本報告では開発した高出力 EDFAを中心に1480nm半導体レーザを用いたEDFAの高出力 化技術を報告する。

2. 1480 nm 半導体励起レーザの特性

筆者らは励起光を波長多重して合波することにより,EDFに 高い励起強度を入射することで高出力を実現する技術開発を 行っている。一般的な1480nm半導体レーザの中心波長は

^{*} 光技術研究所 WPチーム

^{*2} ファイテル製品事業部 光デバイス部 第2課

^{*3} 光ファイバ事業部 ファイバ開発センター

1460nm-1490nmである。しかし,これまでの1480nm半導体 レーザは多数のファブリペローモードで発振しており,その出 カスペクトルは5nm程度のFWHMを有する。出力スペクトル のFWHMが大きいと,波長多重する際の波長間隔が制限され る。損失の点からも,波長多重素子の透過スペクトルの波長帯域 より励起光の出力スペクトルの波長帯域が大きいと,実効的な 励起強度の損失が無視できなくなる。また駆動電流により中心 波長がシフトするので,合波効率が駆動電流に依存する問題が ある。

今回,これらの問題を解決するためにFBG(Fiber Bragg Grating)を外部共振器として波長を安定化した半導体レーザモ ジュールを開発した¹²)。図1にレーザモジュールの構造を示す。 レーザからの出射光はコリメータレンズと集光レンズを通して, ファイバに結合される。ピッグテールファイバはレーザ出力の 偏波合成のために定偏波ファイバとした。開発した半導体レー ザモジュールに使用したFBGの外径は長さ50mm,直径2.7mm であり,モジュールより700mmから800mmの部分にFBGを 配置している。

module ~ FBG:700mm~800mm

図2に25 のサブマウント温度で駆動した場合の駆動電流に 対する出力特性と出力強度の波長スペクトルを示す。比較のた め,FBGのないレーザモジュール(図(a))とFBGにより波長 を安定化したレーザモジュール(図(b))のデータを示す。図2 の上段は駆動電流特性を示すが,FBGの有無によらず800mA までの駆動電流で出力にキンクは生じていない。600mAの駆動 電流時で160mWの出力が得られ,FBGの挿入による出力低下 は小さい。図2の下段は駆動電流500mA時の波長スペクトルの 測定結果である。開発したレーザモジュールではFBGにより出 力スペクトルのFWHMは約5nmから約1.5nmに狭窄化された。

発振中心波長の駆動電流依存性の計測結果を図3に示す。開 発したレーザモジュールでは中心波長の駆動電流依存性は小さ く,従来のFBGのないレーザモジュールに比べて,安定した合 波特性が期待できる。

3. 高出力光ファイバ増幅器の特性

開発した EDFA では前述した FBG により波長を安定化した 半導体レーザを使用した。EDFAの光学構成として双方向励起 構成のEDFAを縦続接続した2ステージ構成を採用した(図4)。

励起光の合波にはレーザモジュールの定偏波ファイバ出力を PBQ Polarization Beam Combiner を用いてはじめに偏波合成 し,波長多重には前段EDFA には2-channel,後段EDFA には 3-channelのWDM(Wavelength Division Multiplexer)カプラ を用いている。使用したレーザモジュールは20個である。励起 レーザの中心波長は2-channelの合波では1465nmと1490nm であり,3-channelの合波では1463nm,1478nm,1493nmで ある。6個のレーザモジュールを使用した3-channelの合波後で,

図3 中心波長の駆動電流依存性(従来, 安定化モ ジュール) LD current dependence of the center wavelength

EDFに入射される励起強度は880mWである。EDFA出力端を 斜め研磨のFCコネクタとし,EDFの中段にアイソレータを挿 入することで多重反射による発振を防いでいる。出力光強度は カロリメータで測定した,また,出力を18dBカプラで分岐し, 出力スペクトルを光スペクトルアナライザで同時に測定した。

高出力化のためにはEDFの最適設計も重要な要素技術である。今回1480nm励起での増幅効率が最大となるようにEDFを設計し,開口率(NA)0.23,コア径5.5umのEDFを開発した。

この EDF により 1480nm 励起シングルステージ構成の EDFA で励起光から信号光への量子変換効率として91%,パワー変換 効率として 86% が得られている。

このEDFを用いて出力光強度が最大になるようにEDF丈長 の最適化を行った結果,前段EDFAのEDF長は93m,後段増 幅器のEDF長は34mであった。図5にEDF端面に入射される 励起強度に対するEDFAの出力特性と,出力スペクトルを示す。 入力信号光波長は1560nm,強度は+7.2dBmである。出力スペ クトルから全出力光強度に対する信号光強度の比を算出すると、 0.99以上の高い値が得られた。これは非常に高い飽和状態で動 作させていることによる。励起光強度の増加と信号光強度の増 加は比例関係にあり, 2.56Wの励起光強度で信号光出力強度 1.5Wを実現した。EDF入出力端における励起光から信号光へ のパワー変換効率は59%,スロープ効率は72%が得られた。シ ングルステージ構成における場合と比較して,開発したEDFA のパワー変換効率が減少している。これはEDFAの中間部に挿 入した光部品の挿入損失によるところが大きく,また,効率が励 起光の波長に依存するので,1465nm近傍の励起光の変換効率 が1480nmの励起光に比較してやや低いことにも起因する。図 6は信号光強度の波長依存性を示す。入力信号光強度は-3dBm とした。1560nmをピークとして少なくとも30nmの帯域で1W (30dBm)以上の信号光強度を示した。

図6 高出力 EDF の出力の波長依存性 Wavelength dependence of the output power of high power EDFA

図7 マッハツェンダー合成器の構成 Schematics of PLC Mach-Zehnder type wavelength multiplexer

図8 合成器の外観 Appearance of wavelength multiplexer

4. 今後の課題

今後数ワット級の高出力を1480nm励起EDFAで得るために は励起レーザの高出力化と励起光の波長合波技術が重要になる。

4.1 励起レーザの高出力化について

EDFでの変換効率は理論限界値に近づき,これ以上改善する ことが難しい。したがって高出力化を目指すためにはより高出 力を有するモジュールが必要とされる。現在,600mAの駆動電 流で180mW程度までのファイバ出力が商用の波長安定化半導 体レーザモジュールで得られている。今後は高出力化に伴い, LDモジュールの冷却効率や大電流駆動における信頼性保証など を検討する必要がある。

4.2 励起光の合波技術について

筆者らはこれまで励起光の波長合波素子として,誘電体多層 膜を用いたWDMカプラを用いてきた。しかし多層膜による WDMカプラでは3波以上の合波時には2個以上のWDMカプ ラが必要となるため,励起光がEDFに入射されるまでの挿入損 失が無視できなくなり,多重度を増すにつれて更に損失が増加 する。また,EDFAの小型化を進めていくうえではファイバ接 続を減らし,集積化を容易にする光学回路が望ましい。筆者らは 合波損失を小さく保ち,励起光の多重数を増加させる新たな素 子として,シリコン基板上に作成したPLC(Planner Lightwave Circuit 技術の応用に取り組んでいる。マッハツェンダー干渉回 路により8波を波長合波する導波路型デバイスを試作した¹³。

図7にデバイスの概要図を示す。波長安定化励起レーザを使用し,励起波長1450nmから1502.5nmまで7.5nm間隔で合波 することを目的としている。TiO₂ドープした導波路の比屈折率 差は0.4%,形状は幅3.4mm,長さ74.0mm,高さ2.0mmであ る。図8に試作したマッハツェンダー型波長合波器の写真を示 す。最小挿入損失は各ポート共に0.9dB以下が得られた。図9 に透過波長スペクトルを示す。各ポートの透過波長帯域制限に よる実効的な励起強度の合波損失は1.2dB以下であった。

5. おわりに

1480nm半導体レーザの波長多重励起技術を用いて1.5Wの 高出力光ファイバ増幅器を開発した。この増幅器により30nm 以上の波長帯域で1Wを越える出力が得られた。また,波長安

定化1480nm 励起レーザにより,波長多重数の増加と励起光の 合波効率が改善されることを示した。今回,波長合波効率を高め るため,PLCによるマッハツェンダー干渉回路を試作した。今 後はマッハツェンダーPLC回路による励起ユニットと高出力光 ファイバ増幅器の開発を計画している。

本論文の執筆に際し,有益な助言をいただいた福島大氏に感 謝いたします。

参考文献

- 1) I.Oshima, A.Fujisaki, and H.Ogoshi: Proc. Suboptic'97, (1997), p.898
- 2) 荒木智宏,田島幸昌,久田安正:電子情報通信学会技術報告, SAT96-7,(1996),p.43.
- 3) 山本貴司,中沢正隆:電子情報通信学会論文誌,J81-C-I, (1998),p.148.
- 4) Benjamin Li, Roos A. Parke, Gordeon S. Jackson, and Richard R. Craig: Proc. Optical Fiber Communication Conference (1997), FC3.
- 5) V.P.Gapontsev, S.M.Matitsin, A.A.Isyneev, and V.B.Kravchenko: Optics and Laser Technol., August, (1982), p.189.
- 6) J.D.Minelly, W.L.Barnes, R.I.Laming, P.R.Mockel, J.E.Townsend, S.G.Grubb, and D.N.Payne: IEEE Photon. Technol. Lett., vol. 5, (1993), p.301.
- 7) Y.Tashiro, H.Tachibana, A.Fujisaki and H.Ogoshi: Proc. Optical Fiber Communication Conference (1997), WA5.
- 8) 式井滋,田村安昭:電子情報通信学会春季大会, C-623, (1989), p.412.
- 9) S.G.Grubb, T.Strasser, W.Y.Cheung, W.A.Reed, V.Mizrahi, T.Erdogan, P.J.Lemaire, A.M.Vengsarkar, and D.J.DiGiovanni: Proc. Optical Amplifier and their Applications (1995), SaA4, p.197.
- 10) M.Fukushima, Y.Tashiro, and H.Ogoshi: Proc. Optical Amplifier and their Applications (1997), TuD3.
- 11) Y.Tashiro, S.Koyanagi, K.Aiso, S.Namiki: Proc. Optical Amplifier and their Applications (1998), WC2.
- 12) S.Koyanagi, A.Mugino, T.Aikiyo, and Y.Ikegami: Proc. Optical Amplifier and their Applications (1998), MC2.
- 13) K.Tanaka, K.Iwashita, Y.Tashiro, S.Namiki, and S.Ozawa: Proc. Optical Fiber Communication Conference (1999), TuH5.