RDFを用いた分散マネージメント線路

Dispersion Managed Transmission Line with Reverse Dispersion Fiber

武笠和則^{*} Kazunori Mukasa 杉崎隆一 Ryuichi Sugizaki 速水修平^{*2} Syuhei Hayami 伊勢 聡^{*2} Satoru Ise

概 要 長距離で大容量のWDM伝送を可能とする次世代の伝送路として,当社は既存のシングル モード光ファイバ(SMF)と,それと全く逆の波長分散特性を持つ逆分散ファイバ(RDF; Reverse Dispersion Fiber)を組み合わせた線路を提案している。今回,屈折率プロファイルの最適化を行い, 低非線形・低損失・低PMDを維持しつつ,広い波長範囲にわたって線路の分散をほぼ完全にフラッ トにできるRDFを開発した。更に,現行のタイト構造の海底ユニットを試作し,実用上問題のない 良好な特性を確認している。

1. はじめに

近年,長距離海底通信では大容量WDM伝送システムの導入 が本格化し,これに用いる伝送路として様々な構造の分散シフ トファイバが提案され,かつ実用化されて来た。ただ,それら の分散シフトファイバでも,広い波長範囲にわたる分散フラッ ト化や,非線形抑制のためのA_{eff}拡大において,将来の大容量 化に対応できるほどの特性改良は実現できていない。

一方,3~4年前から,1300 nm用SMFの陸上既存線路のア ップグレードを目的として,分散補償ファイバモジュール (DCFM)を使用した1550 nmのWDM伝送が始まっている。 これに用いられるDCFMでは,広い波長範囲で分散をほぼ完 全に相殺できる分散スロープ補償タイプが,既に商用化されて いる。ただ, DCFM は中継局内に設置されるため, モジュー ルのコンパクト化への強い要求から,短尺で大きな分散量を得 るための設計がなされる。具体的には,コアの比屈折率差(△) を極端に高くしたファイバ構造を採用することで,負の大きな 分散を実現している。反面,Geを高ドープするため,伝送損 失が高い,非線形性が大きい,PMD(偏波分散)の劣化が起 こりやすいなど,いくつかの欠点も併せ持つことになる。この ため,モジュール用のDCFを分散マネージメント線路として そのまま用いた場合,SMFと組み合わせることで分散フラッ トな線路は容易に実現できるが,線路全体での伝送損失が従来 の分散シフトファイバに比べて大幅に高くなる。更に, DCF が持つ高非線形性による信号光の入力制限や,高PMDによる 波形劣化など,大容量WDM伝送におけるいくつかの障害も同 時に生ずる。

そこで,我々は,上記の問題を解決すべく屈折率プロファイ ルの検討を進め,低損失・低非線形・低PMDであると同時に, ほぼ完全に分散フラットな線路を実現する,線路用として最適 化された逆分散ファイバ(RDF)を開発した¹⁾⁻²⁾。本報告で は,RDFのプロファイル設計,伝送特性,WDM伝送実験,及 び実用化に向けたユニット試作結果などを述べる。

2. RDFの設計

大容量WDM伝送を考えた場合,線路の波長分散を広い波長 範囲にわたって小さくすることが必要になる。RDFは,シン グルモード光ファイバと接続することで分散マネージメント線 路を構成しているために,その単体の特性より伝送路トータル の分散特性と分散スロープ特性が重要となる。伝送路トータル での分散平坦性を評価するために以下の式で定義される分散補 償率という基準が一般的に使用されている。

分散補償率 (%) = $\frac{\text{Slope}_{\text{RDF}}}{\text{Slope}_{\text{SMF}}} / \frac{\text{Dispersion}_{\text{RDF}}}{\text{Dispersion}_{\text{SMF}}} \times 100$ = $\frac{\text{DPS}_{\text{RDF}}}{\text{DPS}_{\text{SMF}}} \times 100$ DPS(nm)= $\frac{\text{Dispersion}}{\text{Dispersion}}$

Slope

分散補償率が100%に近いほど,広帯域で零分散な伝送路の 実現が可能となる。また,RDFとSMFのDPSが一致したとき のみ分散補償率が100%となるため,ファイバ単体の分散スロ ープ補償能力を示す指標としてDPSも広く使用されている。

分散マネージメント伝送路の特徴は,広帯域な分散補償特性にあるため,RDFの設計はSMFと組み合わせて分散補償率が100%になること,言い換えるとDPSがSMFと一致することを

^{*} 光ファイバ事業部 ファイバ開発センタ

^{*2} 光ファイバ事業部 千葉ファイバ製造部 技術課

図2 センターの比屈折率差と分散, MFDの関係 Relationship of dispersion, MFD and center relative refractive index defference

最大の目標とした。DCFにおいて,図1に示すようなW型の プロファイルは構造が比較的単純で,製造性が高く,かつ, 100%に近い分散補償率を達成できるプロファイルとして盛ん に検討されている^{3)~5)}。そこで,RDFにもW型のプロファイ ルを選択し,最適化を行った。

W型プロファイルのパラメータを最適化することにより高 い分散補償性能を達成することは十分可能である。しかし,高 速大容量伝送を考えた場合には,分散補償特性と同時に非線形 現象による波形劣化を抑制することが極めて重要である。非線 形現象の1つである四光波混合(Four Wave Mixing: FWM)は, 局所分散の小さいところで顕著であり,特にファイバの零分散 近傍では,大きな影響を与える。しかしSMFやDCFのような ファイバは,大きな局所分散を持つことからFWMに関しては 有利である。

しかしながら,従来のDCFはその構造上,MFD(モードフィールド径)が小さくセンタコアの∆値が大きいため,自己位

図3 $R_a \geq R_a$ に対する曲げ損失の関係 Relationship between bending loss and R_a and R_a

相変調 (Self Phase Modulation: SPM) や相互位相変調 (Cross Phase Modulation: XPM) による波形の歪みを受けやすい。これは線路としての使用を考えた場合には大きな障害となる。SPMやXPMによる波形の歪み(ϕ_{NL})は,以下の式で表される。

 $\phi_{\rm NL} = (n_2/A_{\rm eff}) \times L_{\rm eff} \times (P_1 + P_2 + P_3 + ... + P_n)$ $n_2/A_{\rm eff}$; 非線形定数 n_2 ; 非線形屈折率 $A_{\rm eff}$; 実効コア断面積 $L_{\rm eff}$; 実効長 P; 入力光パワー

この式から A_{eff} (MFDの2乗に比例)を大きくすることや, n_2 (おおむね,センタコアの Δ 値が大きくなるに従って大きく なっていく)を小さくすることが波形の歪みの抑制に有効であ ることがわかる。

RDFは、プロファイルを最適化することで、非線形性を減 じるように設計されている。特にセンタの∆値(Δ₁)が非線形 特性に大きな影響を与える。Δ₁とMFDの関係を図2に示す。

図2の結果から Δ_1 を1.0~1.2%程度と低めの値に設定することにより,MFDは拡大し,非線形屈折率が低下し,低非線形性が達成されることがわかる。しかし,一般的に Δ_1 を小さくすると曲げ損失が増大するので,センタコアの形状や, R_a や R_a を最適化することにより,高補償率を維持しながら,曲げ損失が大きくないように設計した。分散補償率を100%にして, R_a と R_a を変化させたときの曲げ損失特性の変化を図3に示す。

3. ファイバ特性

上記の設計に従い,実際に試作を行った。シミュレーション 結果に従ったプロファイル範囲で,合成条件や線引き条件を最 適なところに設定することによりRDFを作製した。作製した RDFの特性を表1に示す。表に示すように,非常に高い分散補 償率を維持しながら,低損失,低PMDが達成されていること が分かる。また,最も注目した非線形性に関しても,非線形定 数が12.4 × 10⁻¹⁰ (1/W)程度であり,従来のDCFと比べて6 割程度の低非線形化が図られている。

	-	
RDF諸元		特性例
クラッド径 (µm)		125.0 ± 1.0
クラッド非円率(%)	0.1
コア偏芯 (µm)		0.1
伝送損失(dB/km)	@ 1550 nm	0.24
分散(ps/nm/km)	@ 1550 nm	- 20 ± 5.0
DPS (nm)	@ 1550 nm	350
分散補償率(%)	@ 1550 nm	94
λc (nm)		820
MFD (μm)	@ 1550 nm	5.6
$A_{ m eff}$ ($\mu { m m}^2$)	@ 1550 nm	24
非線形定数(1/W)		12.4 × 10 ⁻¹⁰
20 (曲げ (dB/m)	@ 1550 nm	10
PMD (ps/ km)		0.07
スクリーニングレベ	ル	>1.0 %

表1 試作 RDF の特性例 Characteristics of prototype RDF

表2	各正分散ファイバの特性
	Characteristics of positive dispersion fibers

<i>k</i> 7 ≟4	分散	DPS	損失	A _{eff}
名刖	(ps/nm/km)	(nm)	(dB/km)	(µm ²)
SMF	16.6	286	0.195	75
CSF	18.5	308	0.189	83
FF	18.5	330	0.172	73
				$\lambda = 1550 \text{ nm}$

表3	線路全体での特性	
	Characteristics of transmission lines	

	平均損失	分散Slope
	(dB/km)	(ps/nm²/km)
SMF + RDF	0.213	0.005
CSF + RDF	0.210	0.003
FF + RDF	0.201	0.001
DSF	0.215	0.070
低スロープDSF	0.220	0.035

 $\lambda = 1550 \text{ nm}$

4. RDFを用いた光伝送路の構成

RDFの最大の特徴は正分散ファイバと組み合わせてトータ ルで分散がフラットな線路を達成できることである。このため RDFのパフォーマンスは伝送路全体での特性で決まるという ことになる。そこで,当社の通常シングルモードファイバ (SMF), Ge-dopedカットオフシフトシングルモードファイバ (CSF)と, Fully Fluorine dopedファイバ(FF)を用いて,ト ータルの伝送路特性を評価した。

今回, RDFのペアファイバとして用いた正分散ファイバの 各々の簡単な特性を表2に示す。

各々のファイバとRDFを最適長で接続した場合の,平均損 失,及び分散スロープ特性を表3に示す。表3に示されている

図4 通常DSFとFF + RDFの分散特性の比較 Dispersion characteristics of SMF+RDF and DSF

ように各線路で,非常に低損失で分散フラットな特性が得られ ていることが分かる。従来のDSFが0.07 ps/nm²/km程度,最 近盛んに検討されている分散スロープを低減したDSFでも 0.03 ~ 0.04 ps/nm²/km程度であることを考えると,正分散フ ァイバ+RDF線路で,1桁小さい分散スロープの値が得られて いることは,特筆すべき事項である。

FF + RDF線路の波長分散特性を従来DSFの波長分散特性と 合わせて図4に示す。このような特筆すべき分散平坦性から, この伝送路は広帯域WDM伝送に非常に適した線路と言える。 長波長帯において,多少,負のスロープを持つ傾向が見受けら れるが,実使用上問題のないレベルである。また,例えば,正 の分散スロープを持つファイバを分散補償器として用いること で,長波長域でも完全な分散の波長平坦性が得られ,C,L両 バンドを用いたWDM伝送も可能である⁶⁾。

分散の波長平坦性と同時に,損失の波長平坦性も極めて重要 な事項である。FF + RDFの波長損失特性を図5に示す。波長 損失特性に関しても,分散と同様に非常に平坦な特性が得られ ている。

つづいて,非線形性について考えてみたい。RDFが短尺で 用いる従来のDCFと比して60%程度の低非線形化が図られた とはいえ,RDFの非線形定数は通常SMFに比べ,まだ1桁大 きい数値となっている。これは,負の分散スロープを得るため に用いているW型のプロファイルが,SMFのようなプロファ イルと比べると,MFDの拡大が非常に難しいプロファイルだ からである。

図6 SMFとRDFから構成されるWDM伝送用システムの例 WDM transmission line consisted of SMF and RDF

表4	正分散ファイバとRDFの接続特性
	Fusion splice loss between RDF and positive dispersion
	fibers

	改善前	改善後
	(dB)	(dB)
SMF	0.70	0.20
CSF	0.73	0.23
FF	0.65	0.17

図6に,SMFとRDFを組み合わせた伝送路の例を示す。 SMFは非常に低非線形性ファイバなので,これを有効に活用 するためには,図6のようにEDF増幅直後の高パワーが入射 される前段に置くのが望ましい。第2章でも述べたように,非 線形性による波形ひずみの起こりやすさは入力される光パワー に比例する。光の強度は,当然,光増幅器の直後が一番強く, その後,前段のファイバ(この系の場合は,SMF)の伝送損 失により指数関数的に減少する。その後,後段のファイバに, 減衰した光が入力されるため,SMFに比べて非線形性の高い RDFでも非線形現象による波形劣化が起こりにくくなる。

更に,前述のような異種のファイバから構成される系を考え る際に,もう1つ注意しなくてはならないのは,接続特性であ る。RDFの最大の特徴はΔ₁を小さくして,従来のDCFよりも MFDを拡大しているところであるが,RDFのMFDは通常 SMFに比べた場合は,まだ1/2程度である。そこで,SMFと RDFの接続特性は1つの重要な課題である。通常の融着方法に より,SMFとRDFの融着を行った場合には,融着損失は,0.8 ~1.0 dBにもなる。そこで,融着条件の最適化により,接続損 失を低減する検討を行った。具体的には,熱によるGe層の拡 散を用いた特殊な融着方法を用いることにより最適化を行っ た。表4に最適化前後での各種正分散ファイバとの融着接続損 失を示す。融着条件の最適化を行うことで,どの正分散ファイ バとRDFの組合せでも0.30 dB以下の低い損失で融着接続可能 なことを確認した。

図7 SMFとRDFを用いた10 Gb/s×16波×9412 km伝送後 の光スペクトラム⁸⁾ Optical spectrum of 10 Gb/s×16ch×9412 km WDM transmission with SMF and RDF⁸⁾

上記のような正分散ファイバとRDFを組み合わせた線路を 用いて種々の伝送実験が行われており,WDM,TDMの両面 において,非常に優れた伝送特性が報告されており,将来の高 速大容量伝送路として,大変有望な線路であることが示されて いる^{7)~9)}。

WDM伝送実験の一例を図7に示すが,長距離にわたり,高 速大容量伝送が可能であることが示されている。

5. ユニット特性

これまで述べてきたようにRDFは線路型の分散補償ファイ バなので,ケーブル化後の特性が従来の海底ケーブルと比して 同等レベルであることが要求される。そこで,現在国内で使用 されている海底ケーブル用タイト構造のユニットを試作し,そ の特性を評価した。

評価に使用したファイバの被覆径は,現在海底線で採用され ているφ400 μmとし,外径φ2.55 mmの8心ユニットを試作し た。このときのユニット断面図を図8に示す。

今回の試作では,RDFは表1に示した代表的特性を持つファ イバを使用した。RDF単体のユニット特性調査に主眼を置い たため,各心線には単一のRDFを用いた。

ユニット化の前後において,各心線とも伝送損失,分散特性 PMDなどすべての項目において特性変化は発生しなかった。 使用環境の変化における特性の変動を確認するためRDFユニ ットの環境試験として温度損失特性を評価するとともに,側圧 試験,水圧試験を実施した¹⁰⁾。各試験条件及び結果を表5に示 す。評価したすべての項目において通常の海底ユニットと同等 の特性が得られている。温度損失特性を図9に示す。通常の海 底ユニットと同様に低温で損失減少,高温で損失増大の挙動が 見られ,変化したレベルも通常品と同等である。この結果によ り,RDFが海底ケープル用のファイバとして十分使用可能で あることが示された。

また,詳細については割愛させて頂くが,海底用ケーブル以外にもRDFを用いたテープスロットケーブル,及びルーズチューブケーブルについても試作を行い,良好な特性であることも,併せて確認している¹¹⁾。

図8 ユニット断面図 Structure of the RDF unit

表5 RDFユニットの環境試験結果 Results of environmental test on RDF unit

項目	試験条件	損失変動
温度特性	- 20 ~ + 50	$< \pm 0.004 \text{ dB}$
側圧特性	0 ~ 50 N/cm	<±0.002 dB
水圧特性	0 ~ 10 MPa/cm ²	<±0.01 dB

6. おわりに

W型のプロファイルを最適化することにより,SMFと組み 合わせて用いる低非線形で低損失,低PMDのRDFを開発した。 また,RDFをSMF等の正分散ファイバと組み合わせることで, 非常に分散フラットで,低損失な伝送路を構成できることが確 認できた。この伝送路を用いた伝送系で,長距離大容量伝送の 実験が数多く行われており,非常に良好な伝送特性であること が報告されている。

海底ケーブルとしての使用を仮定してRDFのユニット特性 についての確認を行い,良好な特性であることを確認した。

参考文献

- 1) K. Mukasa, Y. Akasaka, Y. Suzuki and T. Kamiya, Novel network fiber to manage dispersion at $1.55 \,\mu$ m with combination of $1.3 \,\mu$ m zero dispersion single mode fiber, Proceeding of ECOC'97, (1997), MO3C-127
- 2) 武笠和則 赤坂洋一 鈴木好久,低非線形線路型DFCFの開発, 1997年電子情報通信学会ソサイエティ大会(1997),C-3-76
- 3) Y. Akasaka, R. Sugizaki, A. Umeda, I. Oshima and K. Kokura, Dispersion-compensating fiber with W-shaped index profile, OFC'95 Technical Digest, (1995) ThH3

図9 RDFユニットの温度損失特性 Temperature vs. loss characteristics of RDF unit

- 4) R. Sugizaki, Y. Akasaka, S. Arai, K. Furukawa, Y. Suzuki, T. Kamiya and H. Hondo, High-reliability dispersion compensator using negative slope DCF, IWCS'96, (1996) pp.888-891
- 5) Y. Akasaka, R. Sugizaki and T. Kamiya, Dispersion compensating technique of 1300nm zero-dispersion SM fiber to get flat dispersion at 1550nm range, Proceeding of ECOC'95, (1995) We.B.2.4
- 6) K. Fukuchi, M. Kakui, A. Sasaki, T. Ito, Y. Inada, T. Tsuzaki, T. Shitomi, K. Fujii, S. Shikii, H. Sugahara, A. Hasegawa, 1.1-Tb/s (55 x 20-Gb/s) dense WDM soliton transmission over 3,020-km widely-dispersion-managed transmission line employing 1.55/1.58-μm hybrid repeaters, Proceeding of ECOC'99 (1999) PD2-10
- 7) K. Yonenaga, A. Matsuura, S. Kuwahara, M. Yoneyama, Y. Miyamoto and K. Hagimoto, Dispersion-compensation-free 40 Gbit/s x 4-channel WDM transmission experiment using zerodispersion-flattened transmission line, OFC'98 Technical Digest (1998), PD20
- 8)村上 誠,前田英樹,今井崇雅,ファイバ高次分散マネージメント による16×10Gb/s長距離波長多重伝送,1998年電子情報通信 学会ソサイエティ大会(1998),B-10-167
- 9) T. Yamamoto, E. Yoshida, K.R. Tamura and M. Nakazawa, Singlechannel 640 Gbit/s TDM transmission over 100 km, Proceeding of ECOC'99 (1999) We C1.4
- 10) 大山 昇 桑原守二 監修, 光海底ケーブル通信, KEC (1991), 81
- 11) M. Morimoto, I. Kobayashi, H. Hiramatsu, K. Mukasa, R. Sugizaki, Y. Suzuki, Y. Kamikura, Development of Dispersion Compensation Cable Using Reverse Dispersion Fiber, Proceedings of APCC/OECC'99 (1999) C6.8 pp.1590-1593

— 8 —