多心後分岐ケーブルの開発

Development of High-Density Mid-Span Access Cable

谷田部浩^{*} 神部幸昭^{*3} 松岡隆一^{*2}
Hiroshi Yatabe
Hideaki Kambe
Ryuichi Matsuoka
鎌田良行^{*3}
済田義昭^{*} 三上雅俊^{*2}
Yoshiyuki Kamata
Yoshiaki Mizota
Masatoshi Mikami

概 要 光ファイバの収納密度が高く,かつ中間後分岐可能な新しい光ファイバケーブルを開発, 中国電力殿に納入した。構造としては,内層に心線収容密度の高いS溝スロット,外層に中間後分岐 が可能なSZ溝スロットの2層構造である。本構造にすることにより,中継系・幹線系光ケーブルと 加入者系光ケーブルの一体化を実現し,かつテープ心線の管理が容易になった。

本ケーブルの評価を行った結果, 伝送損失, 機械特性, 温度特性, などにおいて実用上問題ない良 好な結果を得た。

1. はじめに

光ファイバを保護するために,ポリエチレン製スロットに収 納する構造が現在広く用いられている。その光ファイバを収納 する溝は円周方向に回転しており,その撚り方が螺旋状に一方 向なものをS溝スロットタイプ,撚り方向が反転されるものを SZ溝スロットタイプという。

近年,加入者網の光化が進むにつれ,中間後分岐が可能な SZ溝スロットタイプの光ファイバケーブルの需要が増大して いるが,その心線収容効率は低いため細径化・多心化は非常に 困難であった。一方,中継系・幹線系の光ファイバケーブルは, 心線収容効率の高いS溝スロットタイプを用いているが,中間 後分岐作業が困難であった。したがって,従来は用途に応じて ケーブル構造を決定し,同一区間であってもケーブルを2条布 設することがあった。しかし,架空では通信ケーブルを1条し か布設できない場合があることや,また地中での管路不足が深 刻であるのが現状である。このように,これまで細径化・多心 化・後分岐性を同時に実現しうる光ファイバケーブルが存在し ていなかった。これらの要求を満足させるためには,新しい光 ファイバケーブルの構造を開発する必要があった。

2. ケーブル設計

現状の問題点について分析し,顧客満足度の向上を重視した 新しいケーブル構造の設計を行った。

2.1 ケーブル構造の要求事項

新しいケーブル構造に要求されている項目は,下記のとおり である。

- * 伝送・電子事業部 第1製造部 ケーブル技術開発課
- *2 伝送・電子事業部 第1製造部 生産技術課
- ^{*3} 伝送・電子事業部 技術部

(1) 高密度化・多心化

経済的な加入者網を構築するためには,ケーブルの布設コスト,物品コストの低減を図る必要がある。また,時として架空では通信ケーブルを1条しか布設できない制約や,地中での管路不足が深刻なことから,高密度化・多心化が要求されている。

(2)後分岐性

中間後分岐は,加入者網を構築するうえで重要な役割を果た している。そのため,新しいケーブル構造においても,任意な 場所からユーザへの引込みが行えるよう,ケーブル中間部分か らテープ心線を容易に取り出せることが必要である。

2.2 顧客満足度の向上

顧客満足度の向上を図るためには,幾つかの点について考慮 する必要がある。

(1) コスト低減

従来は,中継系・幹線系や加入者系などの用途に応じてケー ブル構造を決定し,同一区間であってもケーブルを2条布設す ることがあった。そのため,布設コストや物品コストの増加を 招いていた。これらの余分なコストについて低減する必要があ る。

(2) 安全性

1本のケーブル構造で,中継系・幹線系と加入者系の使い分 けを行うこともある。そのため,後分岐を行う際に中継系・幹 線系で使用しているテープ心線に影響を及ぼす可能性があり, 安全性に疑問があった。更に,用途の異なるテープ心線の管理 が困難であった。このように,用途の違うテープ心線を容易に 管理できることが必要である。

(3) テープ心線

中継系・幹線系に使用するテープ心線は,その接続性を考慮して,4心テープ心線で構成するのが望ましい。また加入者系の場合は,2心双方向通信を考慮し,使用単位となる2心テー

プ心線での構成が望ましい。

2.3 従来のケーブル構造

国内で使用されているスロット型光ファイバ ケーブルは大 きく分けて,加入者系に使用されるSZ溝スロット,中継系・ 幹線系に使用されるS溝スロットの2種類に分類される。その メリットとデメリット及びケーブル構造は表1のとおりであ

表1 従来ケーブルの性能比較 Comparison of conventional cable types

	従来のケーブル構造			
	S溝スロット	SZ溝スロット		
用途	中継系・幹線系	加入者系		
スロット形状	一方向・螺旋状	交互反転・螺旋状		
高密度化	容易	困難		
後分岐性	困難容易			
テープ心線	4心テープ	2心テープ		
	8心テープ	4心テープ		

S溝スロット形状

図1 S溝スロット構造図 Structure of spiral slotted cable る。

図1は,100心型S溝スロットタイプの構造図であり,図2 は,128心型SZ溝スロットタイプの構造である。ほぼ同じ心 線数を収容している両構造であるが,S溝スロットタイプは, スロット外径は約9mmであり,密度は約1.6心/mm²である。 一方SZ溝スロットタイプは,約16mmであり,密度は約0.6 心/mm²である。このように,S溝スロットタイプは,高密度 化に適しているのがわかる。

しかし,中間後分岐について考えると,SZ溝スロットタイ プが優れている。図3に示すように,SZ溝スロットタイプは, 反転部近傍でスロットは山型の軌跡を持つ。そのため反転部近 傍の外被を除去することで,スロットからテープ心線を容易に 取り出すことができる。

2.4 ケーブル構造の設計

高密度化・後分岐性・顧客満足度の向上を考慮した結果,ケ ーブル構造は図4のとおりとなった。本ケーブル構造は,内層 をS溝スロットタイプで構成し,その外周にSZ溝スロット押 出しを行った2層構造である。内層Sスロットに収容されてい るテープ心線を中継系・幹線系として使用し,外層SZ溝スロ ットに収容されているテープ心線を加入者系として使用できる ため,高密度化・後分岐性を同時に実現でき,かつ用途の異な る2本のケーブルを1本のケーブルにまとめられることが本ケ ーブル構造の利点である。更に,中継系・幹線系と加入者系で 使用するテープ心線を層ごとに分けたため,後分岐する際,中 継系・幹線系で使用されるテープ心線に触れることなく作業が

図3 心線取出し余長 Fiber slack of SZ slotted rod

図4 開発ケーブル断面図

— 112 —

Cross-section of the double layered cable newly developed

SZ溝スロット形状

図2 SZ溝スロット構造 Structure of SZ slotted cable でき,優れた無瞬断性が実現できる。また,布設工事時におけ る管理が行いやすくなったことも本ケーブル構造の特徴であ る。表2に本ケーブル構造の利点をまとめた。

更に,布設工事時において端末取扱い性を向上させるため, 内層S溝スロットの上に引裂き紐を挿入し,容易に外層SZ溝 スロットを引き裂きできることを可能にした。

Performance of the developed cable

開発ケーブルの性能

	開発ケーブル		
用途	加入者系		
	甲継糸		
スロット形状	一方向螺旋状(内層) 交互反転螺旋状(外層)		
高密度化	容易		
後分岐性	容易		
その他	用途の異なるケーブルを1本化 後分岐時の安全性 管理がしやすい		

図6 試作ケーブルの伝送損失工程変化(外層) Changes of attenuation during manufacturing process (external layer)

3. ケーブル特性

ケーブルの特性を評価するため,上記ケーブル構造の試作線 を製造し,評価を行った。

3.1 伝送損失特性

各製造工程において,試作ケーブルの伝送損失特性を調査した。結果を図5と6に示す。内層S溝スロットに収容してある4心テープ心線,外層SZ溝スロットに収容してある2心テープとも,工程間において伝送損失変化は見られず,良好な結果であった。

3.2 温度特性

ドラム巻き状態において,-30~+70 に温度変化させた場 合の伝送損失変化を試験した。結果を図7に示す。伝送損失の 温度変化は,測定波長1.55 μmにおいて,0.03 dB/km以下であ り,良い温度特性を得ることができた。

3.3 機械試験

引張り試験,曲げ試験,しごき試験,側圧試験,衝撃試験, 捻回試験を行った。評価結果を表3に示す。各試験において, 良好な結果が得られた。

3.4 中間後分岐特性

長さ500 mmの外被を除去した後,ケーブルからテープ心線 を取り出した場合のたるみ長について評価を行った。評価結果 より心線たるみ長は15 mm以上であり,中間後分岐特性につ いて良好な結果が得られた。

図7 試作ケーブルの温度特性 Changes of attenuation during temperature cycling

表3 試作ケーブルの試験結果 Results of mechanical tests

評価項目	試験条件	評価結果		
		内層(4心)	外層(2心)	
引張特性	0.2%伸び	0.01 dB以下	0.01 dB以下	
曲げ特性	6D	0.01 dB以下	0.01 dB以下	
しごき試験	R250 0.2 %伸び	0.01 dB以下	0.01 dB以下	
側圧特性	1960 N / 100 mm	0.01 dB以下	0.01 dB以下	
衝擊特性	1 Kg × 1 m	0.01 dB以下	0.01 dB以下	
捻回特性	± 90 °/m	0.01 dB以下	0.01 dB以下	

測定波長:λ=1.55 μm

表2

3.5 引裂き特性

外層SZ溝スロットの引裂き性についても評価を行った。その結果,容易に外層SZ溝スロットを引き裂くことができた。 よって,布設工事時において,外層が容易に引き裂けることから,端末取扱い性などの作業性は,従来と同等レベルを維持することができた。

図8 多心後分岐ケーブルの布設一例(その1) Example of practical use (1)

4. ケーブル用途

今回開発した多心後分岐ケーブルの使い方としては,局間伝送や光CATV網の構築などが考えられる。図8及び図9は,その用途の具体例を示したものである。

4.1 局間伝送

図8の例では、クロージャX₁において外層50心分を中間後 分岐し加入者へ、更にクロージャX₂において残りの50心を加 入者へドロップしてある。また内層100心は局Aと局Bを結ん である。このように、本ケーブルの用途としては、内層Sスロ ットに収容されている4心テープ心線を局間伝送として使用し 高信頼性を確保すると共に、外層SZスロットに収容されてい る2心テープ心線を任意な点にて必要な心数分だけを中間後分 岐し加入者へとドロップしていく使い方がある。

4.2 光CATV

図9の例では、クロージャY₁において、内層のファイバを伝送してきた信号を光カプラで分配し、一部を多心後分岐ケープルの外層へと接続し、一部を中間後分岐してある。更に、クロ ージャY₂において上記で分配された外層に収容されているテ ープ心線を中間後分岐しドロップしてある。

このように外層に収容されているテープ心線を随時ドロップ し、テープ心線が無くなり次第、内層に収容されているテープ 心線を外層に収容されているテープ心線と接続すると共に光力 プラで分配し、スター状に光ファイバ網を構築するような使い 方もある。本構成により、中間後分岐を行う近傍まで内層に収 容したファイバで配線しているため、中間後分岐作業時に他の 加入者網つまり内層に収容されているファイバの安全性を保証 することができる。

また,CATVでのHFC(Hybrid Fiber Coaxial)網に使用される 光配線では,分配地点で光カプラを使用し信号を分配するが, 分配前の信号を内層に,分配後の信号を外層のファイバで伝送 することにより,網全体の信頼性を向上することができる。更 に,中間後分岐後の線路で使用してない外層ファイバに,内層 の信号を光カプラで分配して通すことによって,網全体のファ イバ使用効率を向上することができる。

5. おわりに

今回開発し,中国電力殿に納入した多心後分岐ケーブル構造 は,従来のSZ溝スロットタイプと同じ外径のケーブル1条で, 中継系・幹線系ケーブルの特徴である高い心線収容効率と,加 入者系ケーブルとして望ましい中間後分岐性を兼ね備えたもの である。つまり,ケーブルの内側を4心テープで構成した100 心型S溝スロットとし,外層を2心テープで構成した128心型 SZ溝スロットとし,合計で228心とした。ケーブル外径は21 mmで,心線収容効率を約80%高めることができた。

本ケーブル構造は,用途の異なるテープ心線を層別に区別す ることによって心線管理を容易に行えるようにし,中継系・幹 線系と加入者系を一体化したことを利点とするものである。