アルミ製平面型ヒートパイプの開発

Development of an Aluminum Flat Heat Pipe

志村隆広* Takahiro Shimura

榎本久男* Hisao Enomoto

尚 仁* Hitoshi Sho 中村芳雄* Yoshio Nakamura

概 要 近年,平面型ヒートパイプが放熱・冷却用部材として注目されているが,電子機器内部の 高密度実装化がすすむにつれ,より薄型のヒートパイプが求められつつある。当社ではアルミニウム 押出しにより形成される多穴管をコンテナとした,薄型でかつ自在に曲げられる平面型ヒートパイプ を開発した。このヒートパイプは各穴にワイヤーを挿入することでウィック構造を容易に実現したも ので,従来の平面型ヒートパイプにはない特長を有している。

このような特長をもつヒートパイプを光通信用架空密閉筐体(NTT殿向け光加入者終端装置用の 筐体)に適用し,熱性能評価及び信頼性評価を行ったところ,良好な性能が確認できたので報告する。

1. はじめに

電子部品の高性能化,及び,それらの実装の高密度化にとも ない電子部品の放熱・冷却は重要な問題となっている。熱の輸 送には,伝導,対流,輻射の3形態があるが,伝導による熱輸 送を効果的に行う手段として,ヒートパイプは注目されてきた。 特に,ファンを用いた強制対流による冷却が使えない場合は, ヒートパイプは不可欠とも言える。

ヒートパイプには形状の観点から筒型^{1),2)}, 平面型の2通り が知られており, CPUや, IGBTの冷却などの用途で実用化さ れている。特に, 平面型のヒートパイプは発熱体とヒートパイ プの間の熱抵抗を低減させるという観点から注目されていて, 当社でもパワープレート³⁾が開発・実用化されてきた。パワー プレートでは,1枚の平板と,プレスにより作動液の流路をも うけられたもう1枚のアルミ板とをろう付けによりはり合わせ ることでコンテナを形成するが,その製法では薄型化には限界 がある。その一方で,高密度実装化が進むにつれて,より薄く 自在に曲げられる平面型ヒートパイプが必要になってきてい る。また,パワープレートでは毛細管力により作動液を環流さ せるためのウィック構造を設けることが困難であり,ヒートパ イプとして有効に作動させるには設置の仕方に大きな制約があ った。

以上のような問題点を改善すべく,アルミニウムの押出し多 穴管をコンテナに用いた平面型ヒートパイプの開発を行った。 本報告では,アルミニウムの押出し多穴管を用いた平面型ヒー トパイプについて,実用例をもとにした熱性能や信頼性の評価 結果を述べる。

2. 構造と特長

図1に今回用いた多穴管の断面図を示す。多穴管の幅は60 mmで24個のトンネル状の穴があいている。厚さは1.9 mmと 薄型である。押出しにより成形されるため,コンテナの長さは 自由に設計できる。また,図2に示すように肉厚は0.5 mm, 穴部の高さは0.9 mmであるが,曲げに対しては各穴を仕切る 隔壁によって曲げに対する強度が保たれ,10R程度の曲げで穴 が閉塞することはない。したがって,性能を損なうことなく自 在に曲げられるヒートパイプが可能になる。

一方,図2に示すように,トンネル状の穴にワイヤーを挿入 することにより,ワイヤーと多穴管内面との間に毛細管力が生 じ,ウィック構造を形成することができる。ウィックの必要性 については後で詳しく述べる。

また,多穴管の各穴は図3に示すように,両端部で互いに連 通している。これにより各穴間で作動液が自由に循環すること ができるようになっている。端部は溶接によりふさがれ,内部 には作動液が封入される。今回は作動液としてHCFC - 123又 はペンタンを用いたものを作製した。

図1 多穴管の断面図 Cross section of a multi-channeled flat tube

— 11 —

3. 熱性能評価結果

アルミニウム製多穴管を用いた平面型ヒートパイプ(以下, 単にヒートパイプ = HPと略す)はNTT殿向け光加入者終端装 置(システム)に用いる架空筐体の放熱対策として開発され, 初めて実用化された。ここではアルミニウム製多穴管を用いた 平面型ヒートパイプの代表的な熱性能を示すため,システム 用のヒートパイプ(以下,πHPと略す)の熱性能評価結果を 中心に報告する。

光加入者終端装置とは光信号を電気信号に変換する通信用の 装置のことで 基地局から終端装置までを光ケーブルで配線し, 終端装置から各家庭(システムでは10回線)にはメタルケ ーブルで信号が分配される。このような装置はfiber to the homeの前段階としてNTT殿で導入が進められている。装置は 基本的に屋外に設置されることから,密閉筐体となっており, 内部のICからの効率的な放熱が課題となっていた。πHPの外 観を写真1に,模式図を図4に示す。πHPは曲げられた5枚の HPを組み合わせたもので,凝縮部(放熱部)は5枚のHPが熱 伝導性の接着剤や両面テープではり合わされている。冷却対象

写真1 πHPの外観 Appearance of πHP

となるICは図4のように層状に配置され,輻射又は自然対流 により(非接触で)各HPに熱が伝えられる。その際の熱量は HP1枚あたり2~4Wである。また,πHPは通常図4に示すよ うな姿勢で使われるが,場合によってはトップヒートモード側 に(図4で時計回りに)10度程度まで傾けて使用される場合も ある。そこで各HP単体について,蒸発部-凝縮部温度差*ΔT* の傾き依存性を測定することで熱性能評価を行った。

まず,ワイヤーウィックの有無による性能の違いについて述 べる。測定は図5に示すように,曲げられた平面型ヒートパイ プにおいて,図5左側の配置から蒸発部が高い位置になる向き (トップヒートモード)にθ度傾けた場合の蒸発部と凝縮部の 温度差ΔT(2W入熱時)を測定することで評価を行った。図6 に結果を示すが,ウィックを入れた場合と入れない場合では特 にトップヒートモードで蒸発部 - 凝縮部間の温度差に顕著な差 がでることがわかった。また,穴部の高さ0.9 mmに近い径の ワイヤーを使用したほうがより効果があることがわかった。

つぎに,πHPの各HP単体についての評価結果について述べ る。測定の概略図は図3に示すものと同じであり,各HPの長 さ方向の寸法は図7及び表1に示すとおりで,幅は60 mm,厚 さは1.9 mmで,各タイプで主に段差Hが異なっている。また, 湾曲部は10Rで曲げられている。24穴の多穴管の各穴に(厳 密には外側の2穴を除いて)0.8 mm のワイヤーが1本ずつ挿 入され,作動液としてHCFC - 123が内容積の40%~50%の 量だけ封入されている。温度測定は図7に示す蒸発部,凝縮部 の中央部に取り付けた熱電対で行った。

図8にタイプA,C,Eでの傾き特性(4W入熱時)を示す。 すべてのタイプで10度の傾き角のときの熱抵抗が2.5 /W以 下であり,πHPとしての性能を満足している。しかし,タイ プAのように段差の小さいHPではθが大きくなるにつれ,AT が大きくなっている。このことは今回の測定条件の範囲内では 蒸発部の全面に十分に作動液を環流させるほどはウィックの能 力が高くないことを意味し,より性能の優れたHPの開発にあ たっての課題である。図8にペンタンでの測定結果も合わせて 示してあるが,HCFC-123よりも大幅に改善されることがわ

蒸発部長 Le (mm)

表1

0

図7 HP単体の模式図 Schematic representation of single HP

Dimensions of each type of HP

各HPの寸法一覧

タイプ	Le (mm)	Lc (mm)	H (mm)
А	128	211	18
В	129	209	36
С	131	207	54
D	133	205	72
E	135	203	91

10

値き角

15

(度)

20

25

図9 HPとアルミ板の性能比較 Comparison of thermal performance between HP and aluminum plate

かる。ペンタンは地球温暖化係数が小さく,オゾン破壊係数が ゼロであることから,フロンで言われているような地球環境上 の問題がないのも利点である。ただし,ペンタンは可燃性であ り,取扱いに注意が必要である。

つぎに,金属板,例えばアルミ板と比較した場合の優位性に ついて調べた。入熱量及び傾き角を変えて測定したタイプCに おける測定結果と同サイズのアルミ板での値を図9に示す。ま ず, $\theta = 0$ ではHPでは5W入熱時で ΔT は1以下であり,非 常に優れた熱性能を示していることがわかる。5W入熱時で $\Delta T \sim 20$ となるアルミ板と比べれば,性能の差は歴然である。 また,トップヒートモード側に傾けると,HPの熱性能は低下 するが,5W程度の熱量であれば,20度程度傾けても依然とし てアルミ板よりも優れた熱性能を示していることがわかる。

4. 信頼性評価結果

つぎに,作動液としてHCFC - 123を使用した場合の信頼性 を評価した結果について述べる。サンプルとして,タイプEの 直管を用いた。測定の模式図を図10に示す。評価は垂直に立 てられたHPの下端をヒーターで加熱し,所定の温度で連続作 動させた場合の蒸発部 - 凝縮部温度差 ATの経時変化を測定す ることで行った。ここで,作動液の蒸気圧が一定であれば, ATはHP内の非凝縮性ガス量にほぼ比例して大きくなるので, ATの経時変化を見ることで非凝縮性ガス量の経時変化を定性 的に見積もることが可能になる。作動液の蒸気圧を一定にする

— 13 —

には,蒸発部の温度を一定にする必要があるが,今回の評価で は経時変化中は加速試験のため蒸発部温度を120 とし,*ΔT* の測定時のみ蒸発部温度を60 (実用時の推定温度)とした。

図11に測定結果を示す。なお,が測定値,実線は傾向を 見やすくするためのガイドラインを示したものである。この結 果から,2000時間以内でゆっくりと非凝縮性ガスがHP内で発 生し,一定値で飽和することがわかる。これはHP内に(特に 作動液内に溶解している) 不純物として含まれる水分とコンテ ナ材などのアルミニウムの反応により水素ガスが発生し,反応 の終了とともにATの上昇が飽和したためと考えられる。そこ で,含有水分量を変えて同様の評価を行ったところ,図12の ような結果となり,含有水分量が長期使用後のATを大きく左 右することが確認された。なお,図12の縦軸は製造直後のAT からの増分であり,作動時間内にHP内部で発生した水素ガス の量に対応している。以上のことから,作動液内部の水分量が 図11の評価で用いたHPと同程度であることが確認できれば, 製造直後のATと飽和後のATとの差は2 以内と見なせること がわかる。当社ではHCFC - 123内の水分量を厳密に管理して いるが、水分量が規定値以下で安定していること、すなわち、 長期信頼性に問題がないことを確認している。

5. おわりに

押し出し多穴管をコンテナに用いたアルミ製の平面型ヒート パイプを開発した。その特長としては

- ・薄型で軽量である。
- ・自在に曲げることができる。
- ・各穴にワイヤーを挿入することでウィック構造を組み込める。
- といったことがあげられる。

図12 ATのHP内含有水分量依存性 Dependence of AT on the concentration of water in HCFC-123

また,NTT殿向け光加入者終端装置の放熱対策として実用 化されているHPについて,熱性能や信頼性について評価した 結果,

- ・水平作動時はアルミ板と比べて,極めて優れた熱性能を示 す。
- ・熱輸送量が5W以下であれば,水平作動状態からトップヒ ートモード側に20度まで傾けてもアルミ板より優れた熱 性能を示す。
- ・作動液内の水分量を管理することにより,長期信頼性が保 証できる。
- といったことが確認された。

今後は,環境問題上の観点(HCFC - 123は地球温暖化係数 は代替フロンの中では小さいが,オゾン破壊係数がわずかなが らあるのが問題である)から,より環境にやさしい作動液の開 発が主な課題である。また,高性能化の観点からも作動液の開 発は課題となる。パソコン用など,小型で封入量が少ないもの についてはペンタンなど可燃性の作動液が候補となりうるが, 不燃性の作動液が望ましいことは言うまでもない。

また,電子機器の小型化,高密度実装化は今後,ますます進むと思われるが,それに対応するには,より薄い平面型ヒートパイプの開発も課題である。

参考文献

- 1) 村瀬孝志,:古河電工時報,91(1992),88
- 2) 北野谷惇,他:古河電工時報,97(1995),64
- 3) 山本雅章,他:古河電工時報,101(1998),16