22 kV 遮水層付き低減絶縁 CV ケーブル及び接続部の開発

Development of 22-kV XLPE Cable and Joint Having Water Impervious Aluminum Layer

馬 渕 裕 之*	小泉 覚*	野 沢 春 樹 *2	前田義弘*3
Hiroyuki Mabuchi	Satoru Koizumi	Haruki Nozawa	Yoshihiro Maeda
河原秀夫*4	平野 順士*4	藤井 茂*4	
Hideo Kawahara	Junji Hirano	Shigeru Fujii	

概 要 設備効率化による配電コスト低減を目指し,22 kV系統による供給拡大が進められている。 供給信頼度の維持とコスト抑制を図ったケーブル及び接続部の開発が求められ,遮水層にアルミラミ ネートテープを用いたケーブルとこれに対応した接続部の開発を行った。絶縁体厚さの低減のために 接続部の外導端部処理を工夫することにより厚さを4.5 mm(内導含む)まで低減可能になった。ま た,現場作業性改善を図るため常温収縮型の直線接続部を開発した。本稿にてケーブル及び接続部の 構造・特性・作業性について報告をする。

1. はじめに

設備効率化による配電コスト低減を目指し,22 kV系統による供給拡大が進められている。供給信頼度の維持とコスト抑制を図ったケーブル及び接続部の開発が求められ絶縁体厚さを低減したケーブルとこれに対応した接続部の開発を行った。

ケーブル及び接続部にアルミラミネートテープを用いること により信頼性を確保しつつ,かつ絶縁体厚さの低減を図ること ができた。本稿にてケーブル及び接続部の構造・特性・作業性 について報告をする。

2. 22 kV 遮水層付き低減絶縁 CV ケーブルの設計

2.1 目標特性及び構造

目標特性を表1に示す。電気的性能は,JEC-3408-1997「特別高圧(11 kV ~ 275 kV)架橋ポリエチレンケーブル及び接続部の高電圧試験方法」¹¹に準拠しているが,LIWV = 95 kVとしたため,雷インパルス特性が±135 kVとなっている。

遮水性能については,ケーブルは現行66-kV CVケーブルに て実績のある鉛ラミネートテープと同等とした。

2.2 詳細設計

2.2.1 絶縁厚さの検討

ケーブル絶縁厚については,ケーブル設計電界(E_L)より 求めた値と接続部のストレスコーン立上り特性並びに部分放電 特性より求めた値を比較し,その中で最も大きい値を採用し決 定する。各々(おのおの)の面から見た必要絶縁厚さをつぎに 述べる。

(1)ケーブルから検討した絶縁厚さ

交流所要耐電圧から決まる絶縁厚さは交流設計電界を35 kV/mm²⁾とし2.3 mm(内導込み),また,雷インパルス所要耐 電圧から決まる絶縁厚さは雷インパルス設計電界を75 kV/mm²⁾ とし2.8 mm(内導込み)。以上によりケーブルだけで検討した 絶縁厚さは3.0 mmと求めることが出来る。

(2)接続部ストレスコーン立上り部特性から検討した絶縁厚 さ

ケーブル絶縁厚の低減は,絶縁体上の電界を高めることになるため,ストレスコーン立上り部の耐電圧特性を考慮する必要がある。ストレスコーン立上り部の特性は,接続部の破壊試験 データからこの部分の最低破壊電界 *G*minを求め算出した。

代表的な22 kV級接続部の破壊試験データを表2に示す。表 2からは,ケーブルの絶縁厚は4.0 ~ 4.5 mm(内導込み)程度 まで低減が可能であることが分かる。

表1 ケーブル目標特性 Target characteristics for cable

項 目	目標特性
商用周波電圧部分放電	30 kV・10分間で5 pC以下
商用周波耐電圧	45 kV・1時間
雷インパルス耐電圧	±135 kV・各3回(LIWV=95 kV)
長期課通電(気中)	20 kV課電,導体温度90 8h ON,16h OFF 180サイクル
遮水性能	平均透湿度 1 × 10 ⁻⁷ [g・(cm/cm²)・day・mmHg]以下

— 77 —

^{*} 東京電力株式会社 電力技術研究所 配電グループ

^{*2} 東京電力株式会社 神奈川支店 配電運用グループ

^{*3} 電線・機器事業部 技術開発部

^{*4} 電力事業部機器配電部

表2	接続部破壊試験データ
	Breakdown value of joints

接続部	最低破壊値 (kV)	G _{min} (kV/mm)	内導込み 絶縁厚(mm)
差込式	AC 130	17.4	4.1
直線接続部	Imp 380	51.0	4.2
プレハブ	AC 167	19.8	3.7
接続部	Imp 380	45.1	4.5

注1) 印はストレスコーン立上り部以外での破壊データ 注2)所要耐電圧は規格値に裕度1.3(データ数が少ないため)を

乗じた値とし必要絶縁厚を算出した。

AC: 45 × 1.3 = 58.5 kV

Imp: 135 × 1.3 = 175.5 kV

(3)外導端の部分放電特性より求めた絶縁厚さ

ケーブル絶縁厚の低減は,外部半導電層端部の部分放電特性 にも影響を与えるため,各種の処理方法による部分放電特性の 調査を行った。6.6-kV CV ケーブル・150 sq(絶縁厚内導込み4 mm)で実施した試験結果を表3に示す。

最も実現の可能性の高いNO.5の方法における部分放電最低 発生値から G_{min}を求めケーブル絶縁厚による部分放電発生電 圧を算出すると,内導込み絶縁厚4 mmにおいても部分放電発 生電圧は最大サイズである500 sqでも18.2 kVと接続部のスペ ック(17 kV・10 pC以下)を満足することが明らかとなった。

ただし,表3からも分かるように特性値にはバラツキがあり, 更に現場での作業環境によっては,特性低下も考えられるため, 裕度を見込んで4.5 mm以上とする。

以上の検討よりケーブルの絶縁厚としては,最も大きい値で ある4.5mm(内導込み)を採用することとする。

2.2.2 遮水層

遮水層は,金属層にアルミを用い,機械的な強度,耐食性を 考慮した両面ラミネートタイプを採用した。シース下に縦添え をしシースと遮水層を融着一体化することでケーブルの屈曲, 膨張・収縮に追随し機械的特性を向上させている。

2.2.3 ケーブル詳細構造

開発したアルミ遮水CVTケーブルの構造を図1に示す。

図1 22kVアルミ遮水層付き CVT ケーブル 22-kV XLPE cable having water impervious aluminum layer

3. ケーブルの評価

3.1 初期·長期特性

開発品の初期及び長期電気性能試験の結果を表4に示す。す べて目標特性を満足する結果が得られた。

開発品の長期性能を確認するために,180日間の長期課通電 試験を行った。試験条件としては,通常の気中だけではなく実 際の布設環境で考えられる水没状態を模擬した水中の2通りを 実施した。ただし水中については,水温を常温とすると水中ケ ーブル導体温度を90 とするためには,気中ケーブル導体温 度(温度コントロール箇所)がケーブル許容温度を超えてしま うため,水温を60 とすることにより,気中部,水中部とも に導体温度を90 としている。

本試験の期間中,絶縁破壊などの異常は認められなかった。 また本試験後に行った残存性能を調べる商用周波電圧部分放電 試験,商用周波破壊試験,雷インパルス破壊試験も表4に示す ように初期特性と変わらないことが確認できた。

3.2 遮水性能

開発品に適用した遮水構造の性能評価として,以下の試験を 行い,アルミ遮水層は実績のある鉛遮水層と同等であり,30 年の使用に耐えることを確認した。

		6						
	外導処理方法	作業手順	NO.1	NO.2	NO.3	NO.4	NO.5	備考
1	ACPテープ	従来方法	15.3	-	-	-	-	適用不可
2	導電パテ	フリスト端部にパテを巻き付けた 後、ACPテープ巻き	20.5	23.4	19.5	21.2	27.0	要スキル
3	ACP+導電塗料	フリスト端部に導電塗料を塗布後 ACPテープ巻き	24.7	19.6	24.2	30.9	22.6	ACP先端ボイド 未対策
4	ACP+導電塗料先端出し	フリスト端部に導電塗料を塗布後 ACPテープ巻き(導電塗料をACP より先端に出す)	35.4	30.9	35.3	26.4	31.2	機器直結適用 不可
5	半導電性テープ+ACPテー プ(熱収縮チューブ使用)	フリスト上に半導電性テープを巻き,更にACPテープを巻く。熱収 縮チューブをドライヤーで収縮さ	30.4	26.7	19.4	25.4	28.6	可能性有り

表3 部分放電特性 Partial discharge characteristics

3.2.1 透水量測定試験

ケーブル外部からの水の浸入を模擬した試験を行う。ケーブ ルシースのみを温水中に浸漬し透過する水分量を測定すること により透湿度を求めた。

測定結果及び求められた透湿度を図2,表5に示す。

3.2.2 熱·機械特性試験

30年間のヒートサイクルによる膨張・収縮に遮水層に亀裂 (きれつ)が生じないか調べる。ケーブルへの通電により温度 上昇による膨張量を求め、その膨張量による歪(ひず)みを遮 水層に与えた場合の亀裂の有無を検証した。あらかじめ遮水層 のS - N特性を求めておき、歪みにより遮水層に亀裂が生じる かどうかを調べる。

歪みの測定結果及びS-N特性結果を表6,図3に示す。

試験	項目	試験結果(325 sq)
商用周波電圧部分	分放電	発生なし(30 kV・10分)
雷インパルス耐電	『圧	±135 kV・3回 :良
雷インパルス破壊	ŧ.	- 650 kV・1回目
商用周波長時間而	讨電圧	45kV・1時間 :良
商用周波破壊		325 kV・6分
長期課通電試験((気中・温水中)	異常なし
	商用周波電圧 部分放電試験	発生なし(30 kV以上)
長期課通電試験 後の残存性能	商用周波電圧 破壊試験	気中 :115~165 kV 温水中:135~145 kV
	雷インパルス 破壊試験	気中 : - 345 kV 温水中: - 345 kV

表4 ケーブル電気試験結果 Electrical characteristics for cable

破壊箇所はすべて接続部

⁶⁰ 温水中長期課通電試験は(財)電中研にて実施

図2 ケーブル透水量測定結果 Results of moisture permeation measurement for cable

表5 ケーブル透湿度の結果 Water vapor permeation for cable

	現行22 kV CV 遮水なし	開発品 アルミ遮水	(参考) 鉛遮水	
平均透湿度	1.32 × 10 ⁻⁶	8.73 × 10 ⁻⁹	1.93 × 10 ^{- 9}	
透湿度単位[g• (cm/cm ²)• day• mmHg]				

4. 22 kV 遮水層付き低減絶縁 CV ケーブル用 接続部の設計

4.1 目標特性及び構造

開発対象は,直線接続部,Y分岐接続部及び終端接続部(ミ ニクラ)であり目標特性を表7に示す。電気性能は,JEC-3408-1997「特別高圧(11 kV~275 kV)架橋ポリエチレンケー ブル及び接続部の高電圧試験方法」¹⁾に準拠しているが, LIWV = 95 kVのため雷インパルス特性が±135 kVとなってい る。

遮水性能については、接続部に関する規定が存在しないため, 66 kV以上において金属ケース端部遮水処理方法として実績の ある鉛遮水収縮チューブと同等を目標とした。

表6	歪み量の推定値
	Extrapolated value of strain

項目	経年疲労回数	歪み量
日間温度変化 (1回/1日)	10,950回	0.38%
短時間温度変化 (1回/1年)	30回	0.61%
年間温度変化 (1回/1年)	30回	1.05%

図3 S-N特性試験結果 Results of S-N characteristics

表7 接続部目標特性 Target characteristics for joints

項目	目標特性
商用周波耐電圧 部分放電	17 kVで10 pC以下 (JEC-209準拠)
商用周波耐電圧	45 kV・1時間
雷インパルス耐電圧	±135kV・3回(LIWV = 95kV)
長期課通電(気中)	20 kV課電、導体温度 90 8h ON,16h OFF 180サイクル
耐電流	26.2 kA・2秒間で異常のないこと
水密性	外圧98 kPa・1時間で 内部に水の浸透がないこと
遮水性能	鉛遮水熱収縮チューブと同等

4.2 詳細設計

開発した直線接続部の構造を図4に示す。

絶縁構造には,スペーサ・スリーブカバレスによるコスト低 減および現場作業性を考慮して,あらかじめ工場にて拡径され た絶縁筒を現場収縮により取り付け可能な常温収縮型を採用し ている。絶縁筒の材質については,電気特性はもとより,永久 伸び特性に優れたシリコーンゴムを採用している。永久伸び特 性は,工場拡径方式の常温収縮技術を適用するうえで最も重要 な要素の一つであり,シリコーンゴムの優れた永久伸び特性に より,使用期間中(30年)の界面面圧低下を低く抑えること が可能である。

またケーブル絶縁厚の低減は、絶縁体上の電界を高めており、 従来の22 kV級のケーブル外導処理方法(ケーブル外導上に ACPテープ巻き)では部分放電特性において目標性能を満足 しないため、外導処理方法としては、新たに「導電塗料塗布+ 半導電性テープ巻き」方式を開発した。新方式を図5に示す。

この方式は,66 kV以上の電圧階級で実績のある導電塗料を 塗布することにより,ケーブル外導端部の三角ボイドをなくし, 部分放電特性を向上させることができる。ただし,導電塗料だ けでは,くさび接続を使用するプレモールドタイプの接続部 (例えばミニクラ)に適用する場合,プレモールド絶縁体のず らしにより剥(は)がれる恐れがあることから,保護のため半 導電性テープを巻き付け更に半導電性テープ先端を「熱収縮チ ューブ+ドライヤー加熱」によりケーブル絶縁体と平滑処理す る(熱収縮チューブは収縮後除去する)ことにより,ボイドを 極力抑えかつあらゆるタイプの接続部に適用可能な構造とし た。本方式を適用することにより,ケーブル絶縁厚4.5 mm (内導込み)においても部分放電発生電圧30 kV以上を実現し た。

遮水構造については,収縮チューブ内部にアルミ遮水層が内 蔵されたアルミ遮水収縮チューブを採用している。このチュー ブは,収縮層であるポリオレフィン層内部にアルミ製の遮水層 がサンドイッチされており,それぞれの層が接着層にて強固に 接着された構造を有しており,遮水層のラップ長により,透水

図4 22 kV 遮水層付き低減絶縁 CV ケーブル用直線接続部 Water-impervious straight joint for 22-kV waterimpervious XLPE cable (Slip-on type)

図5 外導端部処理方法の新方式 New form of the edge of outer semi-conductive shield 率コントロールが可能である。このアルミ遮水収縮チューブを 直線接続部全長に渡り収縮させることにより,ケーブルと同様 に遮水を実現している。

アルミ遮水収縮チューブ断面を図6に示す。

つぎに,開発したY分岐接続部の構造を図7に示す。本品は コスト低減を重視し,本体を3層ゴムモールド構造(外側を金 属ケースで防護)とし,導体接続方式は圧縮端子接続,絶縁方 式は「絶縁筒+スペーサ構造」を採用している。なお,外導端 部処理方式及び遮水方式は,直線接続部と同一方式を適用して いる。

5. 接続部の評価

5.1 初期特性

開発品の初期特性は,すべて目標性能を満足することを確認 した。初期試験並びに限界性能の把握のために行った破壊試験 の結果を表8に示す。

5.2 長期特性

開発品の長期性能を確認するために,180日間の長期課通電 試験を行った。試験結果を表9に示す。

本試験の期間中,絶縁破壊などの異常は認められなかった。 また本試験後に行った残存性能を調べる商用周波電圧部分放電 試験,商用周波破壊試験,雷インパルス破壊試験でも表9に示 すように初期特性と変わらないことが確認できた。

5.3 遮水性能

開発品に適用した遮水構造の性能評価として,以下の試験を 行い,アルミ遮水熱収縮チューブの性能は実績のある鉛遮水熱 収縮チューブと同等であることを確認した。

図6 アルミ遮水熱収縮チューブ断面 Cross section of water-impervious shrinkable tube comprising an aluminum-polyethylene laminated sheet

7	绝绪栓	14	シーリングテープ
6	絶縁简B	13	ACPテープ
5	スペーサ	12	導電性ペイント
4	絶 緒 简 A	11	半導電性融着テープ
3	圧 縮 端 子	10	圧 着 端 子
2	外部ケース	9	平編組録
1	丫分岐本体	8	遮水収縮チューブ
番号	部品名称	番号	部品名称

図7 22 kV 遮水層付き低減絶縁 CV ケーブル用 Y 分岐接続部 Water-impervious Y-branch joint for 22-kV waterimpervious XLPE cable (Slip-on type)

— 80 —

表8 接続部初期試験及び破壊試験結果 Results of initial test and breakdown test for joints

< 首線接続部>	>
----------	---

項目	試験結果(325 sq)
商用周波耐電圧部分放電	発生なし (発生30 kV以上を確認)
雷インパルス耐電圧	±135 kV・3回:良
雷インパルス破壊 10 kV・3回ステップアップ	- 395 ~ - 425 kV
商用周波耐電圧	45 kV・1時間:良
商用周波電圧破壊 10 kV・1時間ステップ アップ	145 ~ 185 kV
耐電流	良(残存性能初期と変わらず)
水密性	良

< Y分岐接続部 >

項 目	試験結果(325 sq)
商用周波耐電圧部分放電	発生なし (発生30 kV以上を確認)
雷インパルス耐電圧	±135 kV・3回:良
雷インパルス破壊 10 kV・3回ステップアップ	- 205 ~ - 215 kV
商用周波耐電圧	45kV・1時間:良
商用周波電圧破壊 10 kV・1時間ステップ アップ	75 ~ 95 kV
耐電流	良(残存性能初期と変わらず)
水密性	良

試験結果を表10,図8に示す。

5.3.1 内圧気密試験

遮水構造が接続部内部の気圧上昇に耐えうるかどうかを調べる。

5.3.2 透水量測定試験

アルミ遮水収縮チューブと鉛遮水収縮チューブの透水量を調べ比較する。透水量測定にあたっては,ジョイント構造を金属 メッシュパイプで模擬し,66 kV以上CVケーブル透水率測定 試験に準拠して行う。

5.3.3 熱·機械特性試験

30年間のヒートサイクルによる膨張・収縮に遮水層が耐え うるかどうかを調べる。穴を開けた金属パイプに遮水収縮チュ ープを被(かぶ)せ,内部にエアーを注入・排出することによ り膨張・収縮させ,実際の歪みと等価の歪みを与えることによ り,遮水層に亀裂が生じるかどうかを調べる。

5.4作業性検証

開発品の作業性検証を行い,現行の差込式直線接続部及びプレハプ式Y分岐接続部よりも短時間で作業が行えることを確認した。表11に開発品と現行品の作業性の比較を示す。

また,写真1,2に開発した直線接続部及びY分岐接続部の 施工状況を示す。

表9 接続部長期試験結果

Results of cyclic aging test for joints

< 直線接続部 >

項目		試験結果(325 sq)
長期課通電試験(第	気中・温水中)	異常なし
長期課通電試験後 の特性	商用周波電圧 部分放電試験	発生なし (発生30 kV以上を確認)
	商用周波電圧 破壊試験	気中 :115~165 kV 温水中:135~145 kV
	雷インパルス 破壊試験	気中 : - 345 kV 温水中 : - 345 kV

< Y分岐接続部 >

項目		試験結果(325 sq)
長期課通電試験(第	気中・温水中)	異常なし
長期課通電試験後 の残存性能	商用周波電圧 部分放電試験	発生なし (発生30 kV以上を確認)
	商用周波電圧 破壊試験	気中 :85~95 kV 温水中:85~95 kV
	雷インパルス 破壊試験	気中 : - 335 kV 温水中: - 275 kV

60 温水中長期課通電試験は(財)電中研にて実施

表10 接続部遮水性能試験結果 Water-impervious characteristics for joints

試験項目	試験条件	試験結果
内圧気密	60 温水中,49 kPa・24時間にて 気密漏れのないこと	良
透水量測定	60 温水中にて10日後,20日後, 30日後の透水量を測定し,鉛遮水 収縮チューブと比較	良
熱・機械 特性	日間温度変化歪み・10,950回短時 間過負荷温度変化歪み・30回年間 温度変化歪み・30回を与え遮水層 に亀裂が生じないこと	良

図8 接続部透水量測定結果

Results of moisture permeation measurement for joints

表 11 接続部作業性の比較 Comparison of installation for joints

<直線接続部>	•
---------	---

項目	現行品	開発品
絶縁筒装着	人力挿入困難のため , 専用工具を使用	常温収縮式絶縁筒のた め,工具・スキル不要
収縮チュー ブ装着	熱源が必要	現行防水チューブの 収縮作業性と同一
仕上り寸法 /相	外径 130×全長 1150 mm	現行品の約60%に コンパクト化

< Y分岐接続部 >

項 目	現行品	開発品
導体接続	Y分岐本体内くさび 接続のため,専用工 具必要	Y分岐本体外圧縮端子 ボルト接続であり専用 工具不要・確実
仕上り寸法 /相	W150 × H292 × L 1260 mm	現行品の約90%にコン パクト化(全長は同等)

6. おわりに

今後適用拡大が予定される22 kV系統において,ケーブル絶 縁厚低減によるコストダウン及び信頼度の維持,環境対策を目 的とした遮水層付き低減絶縁CVケーブル及びその接続部の開 発に成功した。

最後に,本開発において温水長期課通電試験に多大なる御協 力を頂きました(財)電力中央研究所主任研究員 武田様に深 く謝意を表す。

参考文献

- 1) JEC 3408「特別高圧(11~275kV)架橋ポリエチレンケーブ ルおよび接続部の高電圧試験法」(1997)
- 2)電気協同研究第51巻第1号「CVケーブルおよび接続部の高電 圧試験法」(1995)

写真1 開発品施工状態(直線接続部) View of newly developed straight joint

写真2 開発品施工状態(Y分岐接続部) View of newly developed Y-branch joint