高精度 DOP 測定器の開発

Development of High Precision DOP Measuring Instrument

畑野達也* 高木武史* 池田和浩* 松浦 Tatsuya Hatano Takeshi Takagi Kazuhiro Ikeda Hiroshi Matsuura

概 要 光デジタル通信における高速・大容量化のニーズにこたえるために,高速デジタル伝送技 術が研究されているが,特に40 Gbpsの伝送速度においては,偏波モード分散(Polarization Mode Dispersion; PMD)の影響によって伝送特性が悪化するため, PMD補償器が必要になってくると言わ れている。一般にPMDの量と偏光度(Degree of Polarization: DOP)には相関があることが知られ ていることから,信号光のDOPをモニタすることによってPMD補償が可能になる。そこで,我々は PMD補償器用のPMDモニタを目的として低コストで小型パッケージされた高精度 DOP 測定器を開 発した。本測定器の試作結果について述べる。

1. はじめに

光デジタル通信における高速・大容量化のニーズにこたえる ために高速デジタル伝送技術が研究されているが,特に40 Gbit/sという伝送速度においては,従来の伝送速度ではあまり 問題とされていなかった伝送路中で発生する偏波モード分散 (Polarization Mode Dispersion; PMD)の影響によって伝送特 性 (Bit Error Rate, BER) が悪化するため, PMD 補償器が必 要であると言われる。PMDとは,シングルモード光ファイバ のコアの楕円化,側圧や部分的な温度変化などによって,2つ の直交する偏波モード間に群遅延差が生じるために起こる分散 である。PMD補償器は,伝送路中で発生するPMDの影響を 補償する装置であるが、そのためにはPMDの量をモニタしな ければならない。一般にPMDの量とDOPとに相関があること から, PMDモニタとしてDOPモニタが有効であると考えられ る。図1にPMD補償例を示す。

実際に,10 Gbit/sの伝送実験系において可変 DGD (Differential Group Delay)を用いて, PMDを発生させそのと きの信号光のDOPを測定した。10 Gbit/sの伝送速度では,隣 り合うビットの時間間隔は100 psec であるが, その半分の50 psecのPMDを与えたときでも,DOPは80%程度とそれ程劣 化しない。しかし, BERは大きく劣化したので, BER改善の ためのPMD補償器のPMDモニタとして使用することを考え れば, DOPの高い状態(80%以上)において精度良くDOPを 測定する必要がある。そこで我々は, PMD補償器用のPMD モニタを目的として小型,高性能,低コストなDOP測定器を 開発したのでここに報告する。

宵*

2. 高精度 DOP 測定器

高精度DOP測定器は、入力された光の偏波状態を式(1)に よって定義されるストークスパラメータ (S_0 , S_1 , S_2 , S_3) で 表し, *S*₁, *S*₂, *S*₃を出力するものである。上記の4つストーク スパラメータは,後で述べる構成から出力される4つの電流値 (*I_t*, *I₀*, *I₄₅*, *I_{q45}*)と式(2)によって計算し出力している。こ こで, I_t, I₀, I₄₅, I₀₄₅は, それぞれ本DOP測定器に入射され る全体の光,入射光の4分岐光の1つが0度の偏光子を透過し た光,4分岐光の1つが45°の偏光子を透過した光,4分岐光 の1つが1/4波長板と45°の偏光子を透過した光を,フォトダ イオードによって光電変換された電流である。ここに,0度の 偏光子と45度の偏光子の結晶軸の相対角度は45度であり,基 準角度の設定は任意である。つぎに,ポアンカレ球表示につい て説明する。すべての偏波状態を一座標系に表したもので,偏 光状態の遷移が分かりやすいので用いられる(図2)。ポアン カレ球表示の直交基軸として,水平直線偏光成分をS1,45度 直線偏光成分をS2,右円偏光成分をS3で定義している。

$$S_{0} = \langle |E_{x}|^{2} \rangle + \langle |E_{y}|^{2} \rangle$$

$$S_{1} = \langle |E_{x}|^{2} \rangle - \langle |E_{y}|^{2} \rangle$$

$$S_{2} = \langle 2 \cdot E_{x} \cdot E_{y} \cdot \cos \delta \rangle \qquad (1)$$

$$S_{3} = \langle 2 \cdot E_{x} \cdot E_{y} \cdot \sin \delta \rangle$$
ただし, $\delta = \Phi_{y} - \Phi_{x}$

$$S_{0} : 全体強度 \qquad S_{1} : 水平直線偏光成分$$

$$S_{2} : 45度直線偏光成分 \qquad S_{3} : 右円偏光成分$$

$$S_{0} = I_{t}$$

$$S_{1} = 2 \cdot I_{0} - I_{t}$$

$$S_{2} = 2 \cdot I_{45} - I_{t} \qquad (2)$$

$$S_{3} = 2 \cdot I_{q45} - I_{t}$$

DOP = {(
$$S_{12} + S_{22} + S_{32}$$
)^{1/2}}/ S_0 (3)

つぎに , 高精度DOP測定器の構成を図3に示す。

大きく光学部と電気回路部に分かれている。光学部はファイ バコリメータ,光スプリッタ,1/4波長板,偏光子,フォトダ イオード(PD)から構成されていて,それらは,幅26 mm長 さ70 mm高さ8 mmのきょう体に配置されて,モジュール化さ れている(図4)。

ストークスパラメータの定義から、4つの透過光強度を測定 すればストークスパラメータを算出できる。ここで、図3に基 づいて、光学部、電気回路部について説明する。入射光が、フ ァイバコリメータによって光スプリッタに入射されて、4つの 分岐光となる。1番目の分岐光は、直接PDに受光されて電流 I_l を出力する。2番目の分岐光は、結晶軸の角度が0度の偏光子 を透過してPDに受光されて電流 I_0 を出力する。3番目の分岐 光は、結晶軸の角度が45度の偏光子を透過してPDに受光され て電流 I_{45} を出力する。4番目の分岐光は、1/4波長板、45度の 偏光子を透過してPDに受光されて電流 I_{q45} を出力する。ここ で、0度の偏光子の結晶軸に対して45度の偏光子の結晶軸は、

図2 ポアンカレ球表示 Poincare sphere

図3 高精度 DOP 測定器の構成図 Schematic diagram of high DOP measuring instrument

入射光の進行方向に対して垂直な面内で,45度回転している。 1/4波長板の結晶軸は,0度の偏光子の結晶軸と一致している。 以上の4つの出力電流値 *I*_t,*I*₀,*I*₄₅,*I*_{q45}を電気回路部のpAメ ータによって測定して,CPU内で式(2),(3)による演算を 行い,ストークスパラメータ,DOPを求め,GPIB通信,LCD 表示によって出力している。

電気回路部は,主に32-bit CPU,EPROM部,GPIBコントロ ーラ,微小電流測定部(pAメータ部;測定チャンネル数4 ch, 最小分解能100 pA,最大測定電流1 mA,最大サンプリングレ ート1 msec)から構成されていて,それらは,幅182 mm長さ 257 mmの基板上に配置されている。光学部のモジュールも小 型化するために同一基板上に配置されている。光学部のモジュ ールを配置した基板は,図5のように電源,LCD,各種設定 SW等とともにケーシングされている。

3. 組み立て

本構成要素である光学部の組み立てにおいて,DOP精度に 大きく影響がある要因に,光学部の構成部品の1/4波長板,0 度,45度の偏光子の結晶軸の角度に対する配置の精度がある。 1/4波長板の回転角度が設計からずれた場合についてのSOPと DOP精度への影響を,2個の45度の偏光子の結晶軸に角度ず れがなく,0度の偏光子と45度偏光子の結晶軸が10分ずれた 場合についてシミュレーションを行った。結果を図6,7に示 す。また,0度の偏光子と45度の偏光子の結晶軸がずれた場合 についてのSOPとDOP精度への影響を,2個の45度の偏光子 の結晶軸に角度ずれがなく,1/4波長板の回転角度ずれが20分 の場合についてシミュレーションを行った。結果を図8,9に 示す。

シミュレーション結果から,DOP精度±1%となるのは, 1/4波長板の回転角度ずれが20分以内,偏光子の角度ずれが 10分以内である必要があることが分かった。現在の配置方法 は,1/4波長板と偏光子のホルダに対して,それぞれの部品形 状に対して結晶軸の角度を合わせる方法である。

図4 ストークスアナライザモジュールの外観図 Appearance of Stokes analyzer module

図5 高精度 DOP 測定器の外観図 Appearance of high precision DOP measuring instrument

_____ 38 ____

4. 評価

ストークスパラメータの精度に関しては,図10に示す系で 評価を行った。まず,方向を示すSOPに関してはストークス ベクトルのある基準状態(1,0,0)から1/4波長板,1/2波長 板を順次 θ_1 , θ_2 回転させることで,波長板の回転角 θ_1 , θ_2 か ら計算されるポアンカレ球上の回転角と,本DOP測定器で実 測されるポアンカレ球でのSOPの回転角を比較した。大きさ であるDOPに関しては,光源からの出射光(DOP=1)の偏 波状態を,図11のようにポアンカレ球上を回転させた場合の DOPを測定して比較した。

図11に,図10に示した1/4波長板の回転角 θ_1 を0度,±10 度,±20度,±30度,±40度,±45度に設定して,1/2波長 板の回転角 θ_2 を10度ステップで0度から90度まで回転させた ときの,DOP測定器で測定したストークスパラメータのポア ンカレ球上での遷移を示している。(例えば, θ_1 を+10度に設 定して, θ_2 を0度から90度まで回転させる。つぎに, θ_1 を別 の設定値にして同様に行う。)

本 DOP 測定器で測定したストークスパラメータの,1/4 波 長板と1/2 波長板のそれぞれの結晶軸の角度 θ₁, θ₂から求まる ストークスの計算値に対する角度ズレは,+1.2~-2.0度であ った。DOPの測定結果は,0.973~1.016であった。表1に,本 DOP 測定器の性能を示す。

5. 用途

本DOP測定器の用途例として, PMD測定を行った。

その測定系を図12に示す。波長可変光源, DUT,本DOP測 定器,制御パソコンをつないで,図13のPMD測定プログラム で,ポアンカレ球法で測定した。ポアンカレ球法は,その球上

θ1

θ2

θ0

図11 測定したストークスパラメータの遷移 Changes of measured Stokes parameter

で,SOPの描く軌跡の円弧の1周を位相差360度とすることよ リ,PMDを求める方法である。ポアンカレ球上の任意の2点 の波長と,それに対するストークスベクトルの回転角により, PMD Δτは式(4)によって算出される。DUTには,PMF 9.5 mと50 mを使用した。

測定結果を図14,15,表2に示す。

- - △Φ:2波長に対するストークスベクトルのポアンカレ 球上の回転角(°)
 - C:光速度(3.0×10⁸ m/s)
- λ_n :光源波長
- n:n番目の波長

表1 本DOP測定器の性能 Performance of developed DOP measuring instrument

測定波長	1480 ~ 1640 nm	
入力パワー	- 35 ~ 0 dBm	
サンプリング時間	8 msec (typ)	
DOP精度	± 2.5%	
SOP精度	± 2 deg	
I/F	GPIB	
消費電力	7.5 W	
電源	AC 100 V	
外形寸法	210 × 99 × 350 mm	
出力データ	ストークスパラメータ , DOP	

図12 PMD測定系 PMD measurement system

図13 PMD測定プログラム PMD measurement program

図14 PMD測定結果(PMF = 9.5 m) Result of PMD measurement (PMF=9.5 m)

表2 PMD 測定結果の比較 Comparison of measured value of PMD

DUT		PMD (ps)		
		古河製での測定	他社品での測定	
PMF (9.5 m)	1回目	9.70	9.37	
	2回目	9.66	9.46	
PMF (50 m)	1回目	62.28	63.32	
	2回目	62.20	63.45	

図16 DGD 量に対する DOP の変動 DGD versus changes of DOP

図 17 PMD 補償器の外観 Appearance of PMD compensator

また,PMD補償システムのモニタとして,本DOP測定器を 使用する用途がある。DGDに対するDOPの変動を測定した結 果を図16に示す。測定系は,10 Gbpsの信号光を偏波コント ローラ,可変DGDの順に入射させた後,本DOP測定器に受光 させて測定した。DGDとDOPに相関があり,PMDモニタと してPMD補償器に用途がある。図17に,PMD補償器の外観 を示す。

入射光が,偏波コントローラ,PMF,カプラを介して,出 力される。カプラによる分岐光をストークスアナライザモジュ ールに受光して,DOPをモニタして偏波コントローラにフィ ードバックをかける構成である。

6. おわりに

ファイバコリメータ,スプリッター,1/4 波長板,偏光子, フォトダイオード(PD)から構成されるストークスアナライ ザモジュールと32-bit CPU, EPROM部,GPIBコントローラ, 微小電流測定部等から構成される電気回路部を同一基板上に配 置し一体化し,電源,LCD,設定SW等とともにケーシングを 行い,小型,高精度,低コストな高精度DOP測定器を開発し た。PMD補償器用のPMDモニタとして,需要が期待される。

— 40 —