超低損失 / 超高密度多心光コネクタ

Super Low-Loss / Super High-Density Multi-fiber Optical Connector

篠田正雄* 這*2 末松克輝* 茂永 隆* 山川 Katsuki Suematsu Masao Shinoda Takashi Shigenaga Jun Yamakawa 塚本昌義*2 小野義視*3 安藤孝幸*3 Masayoshi Tsukamoto Yoshimi Ono Takayuki Ando

概 要 今後の大規模光ネットワーク構築上のキーパーツのひとつである光コネクタにおいて,超低損失コネクタ,及び,超高密度コネクタの開発を行った。コネクタ挿入損失の主要因となる光ファイバの位置ずれに関する誤差要因を大きく排除した超精密成形技術,及びアセンプリ技術により,既存品と比較して飛躍的な低損失化,及び高密度化を実現した。低損失化においては,8心コネクタ0.15 dB(SMF),24心コネクタ0.30 dB(SMF)を実現し,また高密度化においては,既存のコネクタ外形寸法内で最大60心までの集積化を実現した。

1. はじめに

昨今,光インターコネクションの拡大により伝送システム装 置においては高速高密度伝送の要求が高まってきている。これ に伴い装置内には低損失かつ高密度の光接続技術が要求され, 更に簡易着脱機能も要求される。よって光ネットワークの更な る推進のためには,低損失,高密度,簡易着脱技術が必要であ る。一方,MPOコネクタや,MPX™コネクタ⁺は,多心ファイ バを簡易着脱できる光コネクタとして広く市場に普及してきて おり,現在,標準のMTサイズ内で24心まで多品種を取り揃 えている。

このような状況下,我々は低損失8心MPOコネクタ及び多 心フェルールの開発について既に報告をしている⁴⁾。今回, 我々は更なる低損失化,及び高密度化について,開発を行った のでその内容についてまとめて報告する。

2. 基本構造

2.1 コネクタ品種,目標性能

今回我々は既存のMTコネクタファミリーとの互換性を考慮 し,標準MTサイズのフェルールにて,低損失化,及び高密度 化を達成させることを前提条件として,8心,24心,32心,及 び60心の各品種について開発を行った。低損失化,及び高密 度化の目標は,コネクタランダム接続の挿入損失と心線数にお いて,以下のように定義,設定した。

超低損失コネクタ : 最大 0.15 dB 以下,8心 低損失高密度コネクタ : 最大 0.35 dB 以下,24心 超高密度コネクタ : 最大 1.0 dB 以下,32心,60心

各種MTフェルールの端面寸法について図1に示す。標準 MT用のコネクタハウジングを利用するため,各フェルールは 標準MTフェルールと同様の外形寸法である。フェルール端面 は縦2.5 mm×横6.4 mmで,ファイバ穴は,横ピッチはすべて

-

写真1 MPO コネクタ MPO connector

写真2 MPX[™]コネクタ MPX[™] connector

- * ファイテルフォトニクス研究所 光部品開発部
- *2 光接続部品部 光コード・コネクタ部
- *3 設備部生産技術センター
- [↑] LIGHTRAY MPX[™]は米国タイコ・エレクトロニクス社の登録商標 です

図1 MTフェルールの端面構造 End-face of MT ferrule

写真3 24MTコネクタ MT24 connector

写真4 32MTコネクタ MT32 connector

超低損失 / 超高密度多心光コネクタ

写真5 60MTコネクタ MT60 connector

0.25 mm,24心は縦ピッチ0.5 mmで12心×2段に配列し,32
心,60心は縦ピッチ0.25 mmでそれぞれ8心×4段,12心×5
段に配列する。MPOコネクタや,MPX™コネクタ内にはMT
フェルールにファイバ付けされたMTコネクタが内蔵される。

また,フェルールの設計改良のみでは前記目標を達成することは極めて困難であるため,コネクタアセンプリにおいては高精度SMファイバを使い,かつ挿入損失評価には高精度な外径 寸法を有するアライメントピンを使うこととしている。

2.2 MPOコネクタの構造

ここで多心コネクタの例として,MPOコネクタを用いて説 明をする。図2に示すようにMPOコネクタ構造は,多心ファ イバリボン用のJIS C 5982 F13型多心光ファイバコネクタに従 っている。コネクタ内には1つのMTフェルールが内蔵され, MTは2ヶのアライメント穴と各心数分のファイバ穴を有する。

一般的にSMFの場合,コネクタの端面はファイバ突出し研磨で8度に形成される。これによりファイバ同士のPC接続が可能となり,屈折率整合剤なしで低い挿入損失特性が得られる。 また,角度を持つファイバ面は光の反射を抑止し,より良好な反射特性が得られる。

3. コネクタ挿入損失の要因

ー般的にコネクタの挿入損失はファイバコアの位置ずれが主 要因である。ここで図には8MTを用いて説明する。挿入損失 Lとファイバコアの位置ずれは以下の式により定義される。

 $L = 4.34 (R/W)^{2} [dB]^{5}$

R[μm]は各ファイバコア同士の位置ずれ,*w*[μm]はモードフ ィールド半径である。*R*には主に以下の要因があげられる。

1) アライメントピンと穴のクリアランス(図3, E1)

2)ファイバとファイバ穴のクリアランス(図3, E2)

3) ファイバ穴の位置ずれ(図3, E3)

4)アライメント穴に対するファイバ穴の傾き(図4, E4)5)接着剤による収縮に起因する曲がり(図5, E5)

低損失を達成させるため,我々はE1,E2,E3を低減するために成形ピンとV溝の精度を向上させた。くわえてE5を低減 させるため収縮の影響を抑止することを目的としてフェルールの窓を小さくかつ端面より遠い位置に変更した。

またアライメントピンと穴のクリアランスにより,角度を持 つ2つのMTは接続時に図6のようにすべりが発生し,接続の 中心からの位置ずれが生じる。低損失コネクタを実現させるた めには,より精密に実際のコネクタ接続時のファイバコア位置 をコントロールすることが重要であり,以下のY補正値につい て最適化することも必要である。

図3 ファイバコアずれの要因 Causes of position error of fiber core

____ 51 ____

図5 接着剤硬化による変形 Bend by curing adhesive resin

図6 すべりによるファイバコアずれ Position error by slipping

これらの要因を綿密に調べ,我々はY補正値の最適値を決定 し,低損失用フェルールを設計した。

以上,1段配列の8MTを例として損失要因を説明したが,フ ァイバ穴の傾きについてより詳細を多段配列タイプの例(24 心)で説明する。図4ではフェルール横方向の傾きについて示 したが,図7のように傾きはフェルール縦方向についても存在 する。しかしながらコネクタ完成時のファイバ位置を満足いく ものにするためには,フェルールは設計上,図8のようにファ イバ穴とアライメント穴を平行にする必要がある。ここでコネ クタアセンブリ時,フェルールは8度に研磨されるため,アラ イメント穴とファイバ穴の長手方向の平行精度はアセンブリ時 の研磨量分にわたり保証する必要がある。またこの研磨量は図 7からも分かるようにファイバが多段の場合,下段のファイバ はより大きくなり,その分だけ平行精度を保証する深さを長く することが必要である。 アライメント穴に対するファイバ穴傾き(E4)

図7 ファイバ穴の傾き(2次元配列MTフェルール) Fiber hole tilt (2D-MT ferrule)

図8 ファイバ穴とアライメント穴の平行配列 Parallel arrangement of fiber and alignment holes

4.1 穴平行精度

以上のような要因分析に基づき,我々はファイバコア軸ずれ の要因を徹底的に排除すべく,精密金型の改良を行った。今回, 金型においてファイバ穴の傾きを低減させることに対して重点 的に取り組んだ,図9に多段(2段24MT)フェルールの金型 構造を示す。従来金型では高精度なピンの整列はフェルールの 端面のみにしか成されない構造であった。これに対して,今回 は高精度にすべての穴を平行に配列させるため,まず,成形ピ ンをピンホルダにより高精度に整列固定させる構造にして,更 にピンホルダをキャビティ部品により高精度に整列固定させる 構造とした。これにより穴配列をフェルール端面位置のみなら ずフェルール内部位置まで高精度化することに成功した。

4.2 樹脂流入性

2段以上にファイバ穴を配列するフェルールにおいては,従 来の構造では穴精度において次のような問題があった。すなわ ち図10に示すように,ファイバ穴はフェルールの内部では上 段と下段の間隔が中央では狭くなるように位置していた。この 原因は樹脂の流れ方によるものと推定される。一般的に図10 に示すように MT フェルールはファイバをガイドする穴とファ イバ穴がつながった構造である。従来のフェルールでは,ファ イバガイド穴径がファイバの横ピッチと同寸法なため,成形時 に樹脂が上段と下段の隙間に流入し難いということがいえた。 よってピンが外側から押され,結果としてファイバ穴が曲がっ ていた。このような問題を改善するため,図11に示すような 新構造のファイバガイド穴を形成するピン構造とした。ファイ バガイド穴の径をファイバ穴ピッチより小さくしたことによ り,隣接するピン間に隙間ができ,その隙間に樹脂が通ること で、上段と下段の成す空間への流入性が向上し、ファイバ穴の 曲がりを低減させることができた。

4.3 超高密度フェルール金型構造

低損失化を最大の目的とすると,ファイバ穴を高精度に配列 させる金型構造は,ピンを3点把持する構造がゆえに前述のV 満方式がより適しているといえる。しかしながらV満方式では, 3段以上の2次元配列フェルールを形成しようとすると,前述 のようなV溝とスペーサを挟む構成では金型構造が複雑になり 量産成形性が極めて低くなる問題が発生してくる。そこで図

図10 従来ピン構造 Structure of conventional pins

図11 改良後ピン構造 Structure of improved pins

12のような精密丸穴プレートにより各ピンを位置決め固定す るタイプの金型構造を採用した。ピンの配列精度はV溝方式に はやや劣るが,穴位置精度は±1 µm以下の金型加工技術を開 発した。これにより今回32心(8心×4段),及び60心(12 心×5段)のファイバ穴を有する超高密度コネクタ用フェルー ルを実現した。

5. 成形

フェルール成形においては,超低損失化,及び超高密度化を 実現させるために,熱硬化性のエポキシ系ハイフィラー低収縮 材料によるトランスファ成形方式を採用した。図13にトラン スファ成形工程を示す。最初に成形機の型締部により金型を強 く締め,つぎに高周波加熱されたタブレット成形樹脂をポット に投入する(1)。(2)においてプランジャはポット内に挿入さ れ,樹脂をプレスし,キャビティに充填する。一定時間プレス 加熱された後,金型を開き,(3)に示すようにキャビティから 成形体はイジェクトされる。成形において,樹脂のキュア温度, 樹脂圧,加熱時間などは成形体の寸法特性に関わる重要な要因 であるため,各条件において最適化を行った。

6. 評価結果

6.1 超低損失8MPOコネクタ

以上のような改良により,フェルール内部まで穴位置精度が 飛躍的に向上した成形体を得ることができ,8心フェルールの 穴位置精度は±0.4 µm以下を実現した。このようなフェルー ルによりアセンブリした MPO コネクタの挿入損失特性を図14 に示す。超低損失タイプはフェルールの高精度化のみでの実現 は困難であるためアセンブリ時に高精度ファイバの選定,及び

図12 超高密度フェルール金型構造 Metal mold for super high-density ferrule

— 53 —

図14 超低損失8MPOコネクタの挿入損失 Insertion loss of super low-loss MPO8 connector

図15 低損失24MTフェルールのファイバ穴位置ずれ Fiber hole position error of low-loss MT24 ferrule

図16 低損失24MPOコネクタの挿入損失 Insertion loss of low-loss MPO24 connector

高精度研磨を行っている。従来の低損失タイプ(最大0.35 dB) と比較し,今回の超低損失タイプは最大0.15 dB以下という飛 躍的な損失低減が成され,セラミック系単心コネクタと同等の 結果が得られた。

6.2 低損失高密度24MPOコネクタ

24心については金型改良後のフェルール穴位置寸法の評価 結果も紹介する。アライメント穴とファイバ穴の傾きを意味す るフェルール端面とフェルール内部のファイバ穴の位置ずれ (E3, E4)の測定結果を図15に示す。フェルール内部位置の

図17 超高密度 32 心コネクタの挿入損失 Insertion loss of super high-density 32-fiber connector

図18 超高密度60心コネクタの挿入損失 Insertion loss of super high-density 60-fiber connector

評価はコネクタアセンブリにおいて研磨されうる量である深さ 400 μmの位置で測定している。穴位置精度はフェルール端面 において1 μm以下,フェルール内部において1.3 μm以下と良 好な値を示している。

今回開発したフェルールによりアセンブリした MPO コネク タの挿入損失特性を図16に示す。今回の低損失タイプは最大 値0.30 dB以下という飛躍的な損失低減が成された。特筆すべ きは,通常アセンブリ時の研磨量150 µmのみならず400 µmも の研磨時においても目標とした低損失値を満足していることで あり,これはフェルールにおける穴の傾きが大きく低減された ことを証明している。

6.3 超高密度32心,60心コネクタ

超高密度型コネクタについては,8心×4段の32心コネクタ, 及び12心×5段の60心コネクタ用の超高密度フェルールを実 現した。図17に32心コネクタの挿入損失特性を示す。評価条 件はSMFによる端面フラット形状研磨であり,接続点には屈 折率整合剤を塗布している。SMFにて実用に値する最大0.8 dB以下という良好な挿入損失特性が得られている。

図18に60心コネクタの挿入損失特性を示す。評価条件は MMFによる端面フラット形状研磨であり,接続点には屈折率 整合剤を塗布している。MMFにて最大0.1 dB以下という良好 な挿入損失特性が得られている。

表1 信頼性試験結果(8心,24心MPOコネクタ) Result of reliability test (MPO8, MPO24 connector)

Test	Duration	Test parameter	Insertion loss variation
Thermal aging	14 days	85°C	< 0.1 dB
Humidity	14 days	95 % at 60°C	< 0.3 dB
Temperature cycling	42 cycles (14 days)	- 40 °C to 75°C	< 0.3 dB
Vibration	2 hours/axis for 3 axis	10 to 55 Hz	< 0.2 dB
Twist		2.2 N	< 0.1 dB
Straight pull		2.2 N	< 0.1 dB
Side pull		2.2 N	< 0.2 dB
Impact	8 cycles	1.5 m drop	< 0.1 dB
Durability	200 cycles	Connect and disconnect	< 0.3 dB

写真6 60MT-単心 変換心線 MT60 Fan-out

6.4 信頼性

機械試験及び環境試験について実施した。表1は今回SMF の斜め研磨MPOコネクタとして良好な初期特性が確認された 超低損失8MPOコネクタ,及び低損失高密度24MPOコネクタ についての評価結果である。試験条件はTelcordia GR-1435-COREに準拠している。いずれの試験項目においても損失変動 は小さく良好な結果が得られた。

7. おわりに

超低損失,及び超高密度コネクタの開発を行った。

8心,24心においてはMPOコネクタとして既存の単心コネ クタに遜色ない良好な光学特性を確認した。本コネクタにより, 装置内配線において,省スペース化,及び作業の簡易化が大き く期待できる。

また32心,60心コネクタにおいても良好な光学特性を確認 した。超高密度コネクタは光ファイバ同士の接続のみならず超 多心ファイバアレイとして光コネクタ以外のアプリケーション に適用できる可能性を有する(大規模光スイッチ等,写真6は Fan-Out適用例)。今後も光コネクタとしてだけでなく,この ような様々な製品への適用も考慮し,更なる性能向上をはかる こととする。

参考文献

- Nagasawa, Yokoyama, Ashiya, and Satake, "A High-Performance Single-Mode Multifiber Connector Using Oblique and Direct Contact Between Multiple Fibers Arranged in Plastic Ferrule", IEEE Photon. Techno. Lett., Vol.3, No.10, pp.937-939, 1991.
- 2) Shimoji, "MPO Optical Backplane Connector", IEICE Trans. Commun., Vol.E-80B, No.4, pp.535-539, 1997.
- 3) Suematsu, Shimoji, Iijima, and Hirao, "Development of Two-Dimensional Array 24-Fiber MPO Connector", Euro Cable, IOS Press, AKM, pp.278-285, 2000.
- 4) Tsukamoto, Hirao, Yamakawa, and Kamiko, "Low-loss MPO Connector", IWCS Proceedings of 50th, pp.379-383, 2001.
- 5) JIS C5962, p.19
- 6) Suematsu, Shinoda, and Ono, "Development of MT ferrule for Low-Loss 24MPO Connector", IWCS Proceedings of 51st, 2002.