メトロ用クーラレスポンプレーザの開発 (ミニポンプ・FOL0903mシリーズ)

Cooler-less Mini Pump Laser Diode Module for Optical Amplifier

南野正幸* 山形友二^{*2} 加藤智也^{*3} 古関 敬^{*4} 福島 徹^{*4} Masayuki Minamino Yuji Yamagata Tomoya Kato Takashi Koseki Toru Fukushima

概 要 メトロ用光アンプに使用する,小型で低消費電力のポンプ用レーザーを開発した。 小型化と低消費電力化を同時に達成するために,ペルチェクーラレスとし,LD素子の高温動作, モジュール設計の最適化,波長固定用FBGパラメータの最適化を行った。 完成したモジュールは,従来型のパタフライモジュールと比較してパッケージ容積1/4,消費電力 1/3,全温度範囲での波長固定を達成している。

1. はじめに

インターネットの普及に伴い,基幹通信網は急速にDWDM による大容量化,高速化が進んでいる。今後は基幹通信網に接 続されるメトロポリタンネットワークと呼ばれる都市部を中心 とする地域的な領域の通信網や,ローカルアクセス網にも大容 量化,高速化が求められ,急速に光化が進むものと考えられ る。 ここで求められるのは,光増幅器をはじめとする通信装置の コストダウン,小型化,低消費電力である。例えば,エルビウ ムドープファイバ(EDF),光カプラ,モニタ用PD,増幅用 LDモジュール等をカード型の小型筐体(きょうたい)に収め たゲインモジュールでは,サイズの小型化,1000ドル台の低 価格化の検討が進められている。

今回それを実現する方法として,クーラレス方式のLDモジ ュールを選択した。比較的部材費に高い割合を占めるペルチェ

* 資材部 購売価格低減プロジェクトチーム

- *2 エムシー・ファイテル株式会社
- *³ ファイテル製品事業部 技術部
- *4 ファイテル製品事業部 光コンポーネント部

図2 光軸と垂直なXY平面方向の軸ズレによる損失 Fiber offset loss

クーラを削除することで原材料費を抑え,かつ内部容積も減ら せるため,小型化が可能となる。同時にペルチェクーラを駆動 する電力も不必要となるため,低消費電力化を実現できる。

また素子には,高温時の効率劣化が小さく,特に高温時の信頼性に優れる980 nm帯LD素子を使用することとした。

2. モジュール設計

2.1 光学設計

光学系としてはクーラ付き1480 nm帯LDモジュールで,既 に実績がある2レンズ系結合系を選んだ。

980 nm帯への変更点としては,高い結合効率を得るために, TEC (Thermal Expansion Core)ファイバを使用したことが挙 げられる。

TEC加工を行った980 nm帯ファイバ及びTEC加工なしの 980 nm帯ファイバとLD素子との結合トレランスカーブを図2 に示す。

980 nm帯用のファイバは1300 nm ~ 1550 nm帯のシングル モードファイバに比べてモードフィールド径が小さいため, 0.2dBの結合劣化を及ぼすトレランス幅が1 μm程度と厳しく, 製造歩留が悪い。TEC加工を施すことによりトレランス幅が2 μm程度となり,組立て時の結合劣化率を低く保つことができ る¹⁾。

2.2 構造設計

パッケージングは Mini-DIL (Dual-inline)型と呼ばれる8ピンの小型パッケージを選択し,内部部品はこれに納まるように 再設計を行った。

クーラレス化によって信頼性試験の規格(Telcordia)上大 きく変わる点は,機械衝撃試験条件である。ペルチェクーラを 内蔵するモジュールの場合は最大加速度 = 500 Gであるのに対 して,ペルチェクーラレスモジュールの場合は,最大加速度 = 1500 Gが求められる。

この条件を満たすために,内部部品組立て時のYAG溶接点の強化を行った。

また環境温度変動時にLD素子と光学系の相対位置が変動す ることによる結合効率変動を防止するために,線膨張率の合っ た材料を選定し,各種部材に採用した。

更にサブマウントとパッケージを固定している半田厚さを最 適値にコントロールすることで,半田クリープや熱履歴による

図3 LDモジュール外観 Appearance of LD module

図4 LDモジュールの構成 Structure of LD module

結合効率変動を防止し,長期信頼性を確保している。

図3,図4にLDモジュールの外観と構成を示す。

2.3 素子

クーラレスモジュールでは環境温度(0~70)下でLD素 子を駆動させるため,(1)高温において電流光出力特性が著し く劣化しないこと,(2)FBGによる波長ロックを全温度領域 で安定して行えること,及び,(3)高温動作においても十分な 信頼性が確保されていること等が要求される。また,980 nm 帯を励起光としてEDFAを動作させた場合の低雑音性という特 質を最大限に生かせるよう,(4)FBG複合共振器構成時の光 出力の時間安定性も極めて重要な性能である。今回,チップレ ベルでそのような特性を引き出せるよう,FBG波長ロックモ ジュール用に最適化された新規チップの開発を行った。

新開発チップ(FFチップ)は共振器長1800 μmのリッジ導 波型レーザを基本構造としており,従来チップより長共振器化 することで,キンク出力の向上と熱放散性の改善による信頼性 向上を図っている。また,FBG装荷による波長安定化と光出 力の経時安定性を実現するため活性層構造を最適化した。

図5にチップの主要部の模式図を示す。レーザエピの結晶成 長法としてはMOCVDを用いている。圧縮歪を付与された InGaAs単一量子井戸, GaAsPバリア, AlGaAs-SCH (Separateconfinement-Heterostructure)層からなる活性層構造を持ち, 安定に横基本モード発振を得るために,幅約3.5 µmのリッジ 導波路構造を形成している。

図6に電流 - 光出力特性を示す。キンク出力は室温で500 mW,75 において400 mW以上が得られる。電力変換効率に ついては,室温で最大44%,70 動作では40%を保ってい る。

信頼性については,図7に接合温度Tj~85,250 mWの APC駆動で進行中の信頼性試験の経過を示す。バーンイン通 電によるスクリーニングを通過した29素子が投入されている が,5000時間経過した時点で故障は生じておらず,70 動作 時においても十分な信頼性が確保されることを確認した。

2.4 波長固定方式

EDFは980 nm付近での増幅効率の波長依存性が大きいため,全温度で安定した増幅を行うには,波長固定が必要となる。 本モジュールではFBG(Fiber Bragg Grating)により波長を固定する方式を採用した。

使用する980 nm帯LD素子のファブリペロー(FP)モード 発振波長は,約0.34 nm/ の温度依存性を持つ。そのため要 求される環境温度範囲0 ~70 で駆動させた場合,LDのFP モード発振波長は24 nm程度の波長シフトがおきることにな る。

FBGにより波長固定する場合,LDのFPモード発振波長と FBG反射波長の差(以後,Detuning量と呼ぶ)が大きくなる とFBG反射波長では発振できなくなる。ここでFPモードでの 発振波長が,FBG反射波長よりも短波側にある場合(低温時) と長波側にある場合(高温時)の,それぞれの限界Detuning 量の和を引き込み幅と定義する(図8参照)。限界Detuning量 の判定は,FBGモードでの発振とFPモードでの発振強度の差 であるSide Mode Suppression Ratio(=SMSR)>13 dBで行っ ている。

要求環境温度範囲0~70 でFBGで波長固定するためには, 引き込み幅が30 nm程度必要である。温度による波長シフトに くわえて,注入電流による波長シフトと製造された素子の波長 バラツキ誤差を吸収するためである。

このような大きな引き込み幅を実現するために,LDチップ

の前端面の反射率(低反射膜ARコート)とFBGの反射率を検 討した。傾向としてARの反射率を低下させたほうが,或いは FBGの反射率を増加したほうが引き込み範囲は広くなる²⁾。し かしFBGの反射率が大きいと効率の低下とキンクレベルの低 下が起こる。今回,AR反射率,FBG反射率を最適化すること により,広い引き込み幅と高いキンクレベルを達成した。

またLD素子には偏波依存性があり,FBGからLDへの戻り 光がTEモードであるとき最も大きな実効反射率が得られる。 戻り光の偏波状態が変化してTMモード成分が大きくなると, FBG反射率が低下したのと同じ状態となる。これにより引き 込み幅が不足し,FBGによる波長固定が外れる場合がある。 今回これを防ぐために偏波保持ファイバを採用し,FBGから の戻り光の偏波状態を安定化した。これにより,ファイバのね じれや実装時のファイバの歪によらず,常にベストな引き込み 特性が得られることになる。

ファイバ端部にはSMファイバを融着接続することで,ユー ザー側での融着作業の簡便化を計っている。

3. 仕様

表1に基本仕様を示す。

動作温度範囲は0 ~ 70 ,光出力は80 mW である。

4. 製品特性

クーラレスポンプLDモジュールの外形寸法を図9に示す。 従来型の14pinパタフライパッケージを使用したLDモジュー ルと比較して,容積は約1/4となっている。

64 -

Parameter	Sym.	Min.	Тур.	Max.	Unit	Condition
Optical output power	Pf					
FOL0903mNR-D14-λ		60	-	-	mW	Tc=0 ~ 70°C, If _{BOL} =<280 mA
FOL0903mNS-D14- λ		70	-	-	mW	Tc=0 ~ 70°C, If _{BOL} =<280 mA
FOL0903mNT-D14-λ		80	-	-	mW	Tc=0 ~ 70°C, If _{BOL} =<280 mA
Threshold current	Ith	-	30	50	mA	CW
Threshold current at 70°C	Ith ₇₀	-	50	85	mA	Tc=70°C, CW
Kink current	Ikink	If _{EOL}	-	-	mA	-
LD forward voltage	Vf	-	2	2.5	V	If _{BOL}
Center wavelength	λc	λ-1.5	λ	λ+1.5	nm	Tc=0 ~ 70°C, If _{BOL} , Peak
Spectral width	Δλ	-	-	3	nm	Tc=0 ~ 70°C, If _{BOL} , FWHM
Monitor current	Im	50	-	3000	μΑ	$Vr_{PD}=5$ V, If _{BOL}
Monitor dark current	Id	-	-	100	nA	Vr _{PD} =5 V
Thermistor resistance	Rth	9.5	10	10.5	kΩ	Ts=25°C
Thermistor B constant	Bth	-	3900	-	K	-

表1 クーラレスポンプレーザーモジュールの仕様 Specification of 980-nm coolerless pump laser module

Tc : Case temperature

BOL : Beginning of life

EOL : End of life

EOL : End of life

図9 クーラレスポンプLDモジュール外形 Dimensions of coolerless pump laser module

4.1 光出力

ケース温度Tc = 0 , 25 , 70 におけるIL曲線を図10に 示す。

ファイバ端出力及び発振波長安定性の注入電流依存性を図 11に示す。しきい値近傍から定格出力を得るまでのLD駆動電 流域において,ピーク波長変動0.3 nm以下,ファイバ端出力 変動0.5%以下の安定性を達成している。また図12に示すよう に,各駆動電流において安定したマルチモードの発振スペクト ルを実現した。

図 10 980 nm 帯クーラレスポンプLD モジュールの IL カーブ ケース温度 Tc = 0 , 25 , 70 L-I curve of 980-nm coolerless pump laser module

図11 ピーク波長及び出力安定性のLD駆動電流依存性 LD current dependent stability of peak wavelength and fiber output power

図 12 室温における FBG 波長ロック時のマルチモード発振ス ペクトル Multimode spectrum of FBG mode lock at room temperature

4.2 出力スペクトル

出力スペクトルを図13に示す。低温,低光出力状態(環境 温度Tc = -10 ,注入電流100 mA)から,高温,高光出力状 態(Tc = 95 ,注入電流500 mA)まで976 nm ± 1.5 nmの範 囲に波長固定されていることがわかる。

中心波長は素子及びFBG仕様によって選択が可能である。

4.3 消費電力

図14にクーラレスポンプレーザーモジュールとの消費電力 を示す。Tc = 70 ,光出力80 mW時の消費電力は0.5 W以下 と,ペルチェクーラを使用する従来の14pinバタフライタイプ のレーザーモジュールと比較して約1/3になっている。

5. 信頼性

クーラレスポンプレーザーモジュールの長期信頼性を確認するため, Telcordia GR-468で要求される信頼性試験を実施した。

例として,機械衝撃及び振動試験結果を図15に,ヒートサイクル試験結果を図16に,エージング試験結果を図17に示す。

これらを含む全信頼性項目において,良好な試験結果が得られ,本モジュールが高い信頼性を持つことが確認できた。

図13 980 nm帯クーラレスポンプモジュールの 出力スペクトル Output spectrum of 980 nm coolerless pump laser module

図14 クーラレスポンプLDモジュールと従来型LDモジュー ルの消費電力比較 Comparison of power consumption between cooler-less LD module and conventional LD module

図15 振動衝撃試験結果 Result of mechanical shock and vibration test

Result of temperature cycling test

--- 66 ----

図17 エージング試験結果 Result of aging test

6. おわりに

メトロポリタンネットワーク向け光アンプ励起用光源として,小型クーラレスポンプレーザモジュールの開発を行い,環 境温度範囲0 ~ 70 において,ファイバ端出力80 mW,消 費電力1/3,モジュール容積1/4を実現した。

参考文献

- 1) 河野健治:「光デバイスのための光学系の基礎と応用」現代工 学社
- 2) 麦野,入江:「ファイバグレーティング付き 980 nm ポンプレ ーザの出力最適化」古河電工時報,第105号