温度無依存 AWG モジュールの開発

Temperature Independent (Athermal) AWG Module

斎藤恒聡* Tsunetoshi Saito 根角昌伸*

Yoshinobu Nekado

奈良一孝* Kazutaka Nara 長谷川淳一* 田中完二*2 Kanji Tanaka

Junichi Hasegawa

柏原一久* Kazuhisa Kashihara

概要DWDMの低消費電力化,光部品の無電力化への要求に応える高性能な温度無依存AWGモ ジュールを開発した。幅広いタイプのAWGに対応可能な独自の温度無依存化技術を用い,100 GHz-32 ch (ガウシアンタイプ), 100 GHz-42ch (セミフラットタイプ)の温度無依存AWG モジュール を試作して各種光学特性の評価を行った。開発した温度無依存AWGモジュールは,0~70 での中 心波長変化,挿入損失変化がそれぞれ ± 0.01 nm 以下,±0.1 dB 以下であり,その他光学特性も非 常に安定していることを確認した。また各種信頼性試験を行い,開発した温度無依存AWGモジュー ルが高い信頼性を有していることを確認した。

1. はじめに

北米の長距離系通信網に端を発した光波長多重通信 (DWDM: Dense-Wavelength Division Multiplexing)は,現在 世界的な広がりを見せており,さらにメトロネットワークとい った短距離系システムにも導入が進められている。また,ます ます強まる光通信の大容量化,高速化の要求に伴い,DWDM の多チャンネル化,高機能化が進められている1)。そしてこれ に伴う光部品点数の増加,ハイパワーEDFA²⁾やラマンアンプ³⁾ に代表される高消費電力機器の導入に伴い, DWDM システム の消費電力は増大する傾向にある。このため個々の光部品に対 しては低消費電力化あるいは無電力化が要求されており,特に メトロネットワークにおいては非常に重要な位置づけとなって いる。

AWG (Arrayed Waveguide Grating)は, 波長を合波または 分波する役割を担う波長合分波器として,これまで多くの DWDMシステムに導入されてきた。AWGはチャンネル数や 波長間隔に対する設計の自由度が大きく,多チャンネル化が容 易であり,また小型で対応が可能である。さらに,チャンネル 数が増えてもモジュールのコストがあまり変わらないため,多 チャンネルのDWDMシステムではチャンネルあたりのコスト を低減できるというメリットがある。また,波長分散が非常に 小さく40 Gbpsといった高速なシステムに対しても適してお り、今後のDWDMシステムにおいてもますます大きな需要が 期待されている。

*2 ファイテル製品事業部 開発部

ところで,AWGにはその材料である石英ガラスが有する屈 折率の温度依存性により,合分波の中心波長が温度により変化 するという性質がある。このため実際のDWDMシステムでの 使用に際しては,ペルチェやヒーターにより温度を一定に保つ 温調を行うのが一般的である。よってAWGモジュールに対し ても,他の光部品同様に低消費電力化が要求されており,古河 電工では低消費電力型のペルチェタイプAWGモジュール,ヒ ータータイプAWGモジュールを開発してきた435)。

今回我々はDWDMシステムの更なる低消費電力化の要求に 応えるべく またメトロネットワーク等への適用を前提として, 温調のいらない, すなわち温度無依存のAWGモジュールを開 発した。開発した温度無依存AWGモジュールは、独自の温度 無依存化技術を用い、従来実現が難しかった多チャンネル AWGでのほぼ完全な温度依存性補償を可能とした。本報告で は,この新しい温度無依存化技術の原理について説明を行う。 また, 100 GHz-32ch (ガウシアンタイプ)及び100 GHz-42ch (セミフラットタイプ)の温度無依存AWGモジュールの試作 結果と共に, Telcordia GR-1209, 1221 に基づいた信頼性試験 の結果についても報告を行う。

2. 温度無依存化の原理

2.1 AWGの原理

AWGは,石英もしくはシリコン等の基板上に石英系の材料 によりクラッドとコアを堆積し,光導波路を集積化した PLC (Planar Lightwave Circuit)である。図1にAWGの回路構成を 示す。

基板上に,入射導波路,入射側スラブ導波路,アレイ導波路, 出射側スラブ導波路,出射導波路が形成されている。この AWGの入射導波路に合波された光が入射すると,スラブ導波

^{*} 研究開発本部 ファイテルフォトニクス研究所

Light-waveguide circuit structure of AWG

路で回折により広がりアレイ導波路に入射する。アレイ導波路 は複数のチャネル導波路によって構成されており,隣り合うチ ャネル導波路はある一定の光路長差 Lをもって配列されてい る。このため,アレイ導波路の出力端では,それぞれのチャネ ル導波路を通過した光に位相差が付けられる。アレイ導波路を 通過した光は出射側スラブ導波路に伝搬され回折により広がる が,それぞれのチャネル導波路を通過した光は互いに干渉し, 結果として波面の揃う方向にのみ強めあい集光する。この集光 方向は波長によって異なるため,出射側スラブ導波路出射部の それぞれの位置に出射導波路を設置することにより,異なる波 長の光を取り出すことが可能となる。

ここで,AWGの出射ポートから出射する中心波長 は式(1) で与えられる。

$$n_s dsin + n_c \quad L = m \tag{1}$$

n_sとn_cはそれぞれスラブ導波路,アレイ導波路の実効屈折 率であり,dは隣り合うアレイ導波路のアレイ導波路出射端に おける間隔, は出射スラブ導波路における回折角度であり, mは回折次数である。

以上波長分波器として機能する場合のAWGの仕組みについ て説明したが,このAWGは波長合波器としても機能する。す なわち,波長分波器として使用した際の出射導波路からそれぞ れの波長の光を入射することにより,入射導波路からこれらの 光が合波されて出力される事になる。

2.2 AWGの温度依存性

このように,AWGはアレイ導波路における光路長差を利用 した回折格子であるので,この光路長差 Lは一定に保たれる 必要がある。しかしながら実際には,温度変化による導波路材 料の屈折率の変化や,基板及び導波路の熱膨張,収縮のために 温度によって光路長が変化し,光路長差 Lも変化する。この 結果,出射側スラブ導波路の出射導波路側における光の焦点位 置が変化し,出射導波路から取り出される光の波長が変化する ことになる。この波長の変化量は,式(1)を温度Tで微分す ることにより得られる。

$$\frac{d}{dT} = \frac{dn_c}{n_c} \frac{dn_c}{dT} + s$$
 (2)

。は基板であるシリコンの熱膨張係数である。ここで,コ アの屈折率の温度依存性として,8×10⁻⁶/ ,シリコン基板 の熱膨張係数として3×10⁻⁶/ を適用すると,1550 nmでは, AWGの温度依存性は0.011 nm / と見積もられる。

2.3 温度無依存化の原理

この温度依存性を補償するために,我々はAWGの線分散特

図2 AWGのスラブ導波路部 Slab waveguide of AWG

性に着目した。図2はAWGのスラブ導波路部分を示した図で ある。

Oは(1)式で = 0となる位置であり、このときの波長 ₀ はAWGの中心波長と呼ばれ、式(3)で与えられる。

$$_{0} = \frac{n_{c} L}{m}$$
(3)

そして回折角 を有する光の集光位置は,点0とは異なる 点Pに集光する。ここで,O-P間の距離をxとすると波長 と の間に次式(4)が成立する。

$$\frac{dx}{d} = \frac{L_f \ L}{n_s d_0} n_g \tag{4}$$

ここで, L_tはスラブ導波路の焦点距離であり, n_gはアレイ導 波路の群屈折率である。この式(4)は,出力スラブ導波路の 焦点Oと距離 dx離れた場所に出力導波路を配置することによ りd だけ波長の異なった光を取り出すことが可能であること を意味する。すなわち,温度の変化によってずれた中心波長d の分, dxだけ出力導波路位置を変化することができれば温度 変化による中心波長の変化は補正される。

この原理を実現するために,我々はAWGの回路をスラブ導 波路で切断する構造を考案した。図3は開発した温度無依存 AWGの構造を示したものである。

AWGの回路は一方のスラブ導波路で切断され,チップは大 片と小片に分離されている。そしてこれらの大片と小片は補償

図3 温度無依存AWGの構造概略 Structure of Athermal AWG

図4 温度無依存AWGの原理 Principle of Athermal AWG

板である銅板の端部にそれぞれ貼り付けられ,同図に示すよう に連結されている。銅の線膨張係数は基板のSiより一桁大き いため,温度が変化すると大片に対して小片が相対的に移動す る。

図4はスラブ導波路部分の図であり,中心波長の温度依存性 補償の原理を図解したものである。通常AWGでは,温度が変 化すると焦点位置は同図に示す様に変化する。一方,温度無依 存AWGでは,温度の変化によって焦点位置がずれるが,温度 変化に伴う銅板の伸縮によってそのずれた焦点位置に出射導波 路が移動し,常に一定の波長を出力することが可能となる。な お光がこの出射ポートから入射した場合にも同様に中心波長の 温度依存性補償が可能である。

本温度無依存AWGは,スラブ導波路において焦点位置を制 御する事により中心波長の温度依存性を補償する方式を用いて いる。このため温度無依存化による光学特性への影響が少なく, また,補償板である銅板の線膨張係数は一定かつ安定なため, きわめて良好な温度無依存化を実現可能である。さらに,多チ ャンネルAWGにおいても同様に温度無依存化が可能であると いう特徴を有している。

2.4 銅板(補償板)長さ

上記の温度無依存化原理を用い,精密な中心波長の温度依存 性補償を行うには,補償板として機能する銅板の長さを調整す る必要がある。以下,銅板長の決定方法について説明を行う。 (4)式より通常AWGの,スラブ導波路における焦点位置の変 化は(5)式で表される。

$$dx = \frac{L_f \ L}{n_s d_0} \ n_g \frac{d}{dT} \ T \tag{5}$$

本式より,一例として表1に示したAWG回路のパラメータ を用いると(6)式が導き出される。

$$dx = 0.275T$$
 (6)

すなわち,温度が1 変化するごとにスラブ導波路端部にお ける焦点位置が 0.275μ m変化することになる。よって,この 変化量を銅板の伸縮によって補償すればよいことになる。銅の 線膨張係数は約 1.7×10^{-5} であるので,(6)式より銅板長は 16.2 mmと計算される。ここで,銅板の長さはAWGの回路設 計(回路のパラメータ)によって異なるが,概ね15 mm ~ 25 mm程度である。なお,中心波長補償の精度を±0.005 nm(0~70 の温度範囲で)とした場合,銅板長の許容誤差は±0.2mm程度であり,製造上十分な許容誤差を持っている。補償板

表1 100 GHz-32ch 温度無依存 AWG の回路パラメータ Parameters for 100 GHz-32ch athermal AWG

Parameters	Values
Channel spacing	100 GHz
Channel number	32
Relative refractive index difference	0.8%
Focal length of slab waveguide: L_f	13160µm
Length difference between adjacent arrayed waveguides : ΔL	40.5µm
Pitch between adjacent arrayed waveguides at the end of arrayed waveguide: <i>d</i>	13.75µm
Diffraction order: <i>m</i>	38

として機能する銅板の寸法に対し,大きな許容誤差を有することも本温度無依存AWGモジュールの特徴の一つである。

3. 試作結果

以上の原理を用い,100 GHz-32ch,100 GHz-42chの温度無 依存AWGモジュールを試作した。なお,100 GHz-32chについ てはガウシアン型,100 GHz-42chについては,従来のフラッ トタイプより挿入損失が小さく,最近需要が高まっているセミ フラット型(ガウシアン型とフラット型の中間)波形のAWG チップを用いた。

図5は,作製した100 GHz-32ch温度無依存AWGモジュール の外観写真である。パッケージサイズは57×97×8.5 (mm) であり,小型,薄型を実現している。なお,100 GHz-42chの パッケージサイズは80×130×8.5 (mm)である。

図6,図7は,100 GHz-32ch,100 GHz-40chそれぞれの温度 無依存AWGモジュールの,20 における全チャンネルのスペ クトラムを示したものである。スペクトラムの形状はチップ状 態での測定結果とほぼ同一であり,温度無依存化による光学特 性の劣化は認められなかった。

図8は,100 GHz-42ch 温度無依存 AWG モジュールの中心波 長の,0 ~70 における温度依存性を示したものである。中 心波長の温度依存性は±0.01 nm以下であり,ほぼ完全な温度 無依存化を実現している事が確認された。なお,100 GHz-32ch 温度無依存 AWG モジュールについても同等の結果が得られ た。

図5 AWGモジュール外観(100 GHz-32ch) Appearance of Athermal AWG module (100 GHz-32ch)

図6 温度無依存 AWG モジュールのスペクトラム (100 GHz-32ch ガウシアンタイプ) Spectrum of Athermal AWG module (100 GHz-32ch Gaussian type)

図7 温度無依存AWGモジュールのスペクトラム (100 GHz-42ch セミフラットタイプ) Spectrum of Athermal AWG module (100 GHz-42ch Semi-flat type)

図9は,100 GHz-32ch 温度無依存 AWG モジュールのスペク トラムの温度依存性を示したものである。同図には代表ポート として16ポート目の結果を示した。0 ~70 でスペクトラ ムに変化はみられず,光学特性が非常に安定している事が確認 された。なお,全ポートについて同様な結果が得られた。また, 挿入損失の温度依存性は0 ~70 で0.1 dB以下であった。図

10は,100 GHz-42ch温度無依存AWGモジュールのスペクトラムの温度依存性を示したものである(グラフは24ポート目の結果)。100 GHz-42chの温度無依存AWGについても,温度変化でスペクトラムの変化は無く,光学特性が非常に安定している結果が得られた。

4. 信頼性試験結果

信頼性試験は,Telcordia GR-1209,GR-1221に基づいて各種 試験を行った。表2に各種信頼性試験の結果を示す。表中の数 値は,初期値からの変化量を示したものである。なお,信頼性 試験には100 GHz-32chの温度無依存AWGモジュールを用い た。

図11(a),(b)には,各試験の代表として温度サイクル試験 (-40~85 /500サイクル)の結果を示した。図11(a),(b) は,それぞれ初期状態からの,中心波長,および挿入損失変化 のポート間最悪値の推移を示したものである。中心波長,挿入 損失とも非常に安定している結果が得られた。なお,全ての試 験についてモジュールの劣化は認められず,開発した温度無依 存AWGが非常に高い信頼性を有している事を確認した。

-1.0

			Posult			
Reliability Test	Condition	n	Insertion Loss Change (dB)		Center Wavelength Change (nm)	
Vaibration	20 G, 20 ~ 2000 Hz 4 min/cycles 4 cycles/axis	14	Ave Worst Std	0.00 -0.10 0.031	Ave Worst Std	0.002 -0.015 0.0056
Impact	500 G 5 times/direction 6 directions	14	Ave Worst Std	-0.01 0.11 0.025	Ave Worst Std	0.000 0.011 0.0046
Temperature Cycling	-40 ~ 85 500 cycles	14	Ave Worst Std	0.00 0.17 0.051	Ave Worst Std	-0.003 0.013 0.0060
Damp Heat	85 • 85%RH 2000 hours	15	Ave Worst Std	0.10 0.30 0.087	Ave Worst Std	0.012 0.022 0.0050
Low Temperature Storage	-40 2000 hours	3	Ave Worst Std	-0.06 -0.11 0.023	Ave Worst Std	-0.011 -0.018 0.0075
Temperature-humidity Cycling	-40 ~ 85 20 ~ 85%RH 42 cycles	3	Ave Worst Std	0.02 0.09 0.018	Ave Worst Std	-0.014 -0.020 0.0057
Cable Retention	1.5, 0.45 kgf 60 sec	11	Ave Worst Std	0.00 0.00 0.000	-	
Side Pull	0.23 kgf 5 sec 90 2 directions	11	Ave Worst Std	0.00 0.00 0.000	-	

表2 信頼性試験結果 Results of reliability test

5. おわりに

DWDMの低消費電力化への対応,メトロネットワークへの 適用を前提とし,実用的な温度無依存AWGモジュールを開発 した。100 GHz-32ch(ガウシアン),100 GHz-42ch(セミフラ ット)のモジュールを試作し各種評価及を行った。開発した温 度無依存AWGモジュールは0~70 での中心波長変化が± 0.01 nm以下,挿入損失変化が0.1 dB以下であり,その他の光 学特性も非常に安定している事を確認した。また,Telcordia GR-1209,GR-1221に基づいて各種信頼性試験を行い,開発し た温度無依存AWGモジュールが高信頼性を有していることを 確認した。本温度無依存AWGの温度無依存化原理はAWG回 路が持つ基本特性に影響を与えることがほとんど無いことか ら,様々なタイプのAWGに適用可能である。

参考文献

- G. Charlet, J.-C. Antona, S. Lanne, P. Tran, W. Idler, M. Gorlier, S. Borne, A. Klekamp, C. Simonneau, L. Pierre, Y. Frignac, M. Molina, F. Beaumont, J.-P. Hamaide and S. Bigo: "6.4 Tb/s (159-42.7Gb/s) capacity over 21~100 km using bandwidthlimited phase-shaped binary transmission," Proc. European Conference on Optical Communication,(2002) PD Paper 4.1.
- 2) Y. Tashiro, S. Koyanagi, K. Aiso and S. Namiki: "1.5W erbium doped fiber amplifier pumped by the wavelength division multiplexed 1480nm laser diodes with fiber Bragg grating," Tech. Dig. OAA '98, Vail CO, July '98, paper WC2.
- 江森芳博他:「波長多重励起光源を用いた広帯域WDM伝送用 ラマン増幅器の開発」,古河電工時報第108号(2001),37
- 4) 斎藤恒聡他:「100 GHz-16 ch AWGモジュール」, 古河電工時報 第105号(2000),30
- 5) 長谷川淳一他:「ヒーター制御タイプAWGモジュールの開発」, 古河電工時報第110号(2002),50.