4.25 Gbps 850 nm VCSEL TOSAの開発

Development of 4.25 Gbps 850 nm VCSEL TOSA

岩井則広* Norihiro Iwai 有賀麻衣子* Maiko Ariga 池永賀彦* Yoshihiko Ikenaga 鈴木宏明* Hiroaki Suzuki

西片一昭* Kevin Nishikata

横内則之* Noriyuki Yokouchi 粕 川 秋 彦* Akihiko Kasukawa

概 要 近年,インターネットの爆発的な普及によりデータ伝送速度の高速化が求められている。 また,デジタル家電の急速な普及にも後押しされ,今後,家庭内の各機器間通信への応用など,短距 離データ通信の更なる普及が期待される。このような折,4.25 Gbpsで動作可能な850 nm VCSEL TOSAは,次世代のファイバチャネル用光源として現在,世界の研究機関で開発が進められている。 今回我々は,VCSEL素子構造の最適化及びTOSAの作製と特性評価を行った。その結果,4.25 Gbps での動作をはじめ,静特性,温度特性,信頼性等の各特性において,仕様を十分に満足することがで きた。

1. はじめに

近年,インターネットの爆発的な普及によりデータ伝送速度 の高速化が求められている。また,デジタル家電の急速な普及 にも後押しされ,今後,家庭内の各機器間通信への応用など, 短距離データ通信の更なる普及が期待される。

一方、850 nm VCSEL¹⁾ (vertical cavity surface emitting laser; 面発光レーザ)は、TOSA (transmitter optical subassembly)の形態で、ギガビットイーサやファイバチャネルと いったデータコミュニケーション用のトランシーバに搭載さ れ、既に実用化されている。従来のVCSEL TOSA は伝送速度 2.5 Gbps 以下が主流であったが、ファイバチャネルでは現在 4.25 Gbpsへの高速化が精力的に行われており、今後4.25 Gbps で動作可能な VCSEL TOSA が必要とされる。

今回我々は、4.25 Gbpsで動作可能な850 nm VCSEL TOSA を作製し、4.25 Gbpsでの動作をはじめ、静特性、温度特性、 信頼性等の各特性の評価を行った。その結果、仕様を十分に満 足する特性が得られたので以下に報告する。

2. VCSEL素子構造及びその最適化

TOSAの特性は、高周波の変調特性を除き、ほぼVCSEL素 子の特性で決定される。本章では、850 nm VCSEL素子の構造 と設計の最適化に関して報告する。

2.1 VCSEL素子の構造

今回開発を行った酸化層閉じ込め型構造20では、A1酸化層に

* 研究開発本部 横浜研究所

より電流と光を有効に閉じ込めることで、低しきい値電流、高 効率等の優れた特性が実現されている^{3,4}。また、電流対光出 力(L/I)特性、電流対電圧(V/I)特性等の各特性は、前記AI酸 化層により囲まれた発光領域の径(酸化アパーチャ径)に大き く依存する。即ち、酸化アパーチャサイズを調整することで所 望の特性を得ることが可能である。

図1に,波長850 nm帯酸化層閉じ込め型VCSELの断面模 式図を示す⁵⁾。p型GaAs基板上に,p型のAl₀₂Ga_{0.8}As/Al_{0.9}G a_{0.1}As 35ペアからなる下部多層膜反射鏡 (distributed Bragg reflector; DBR-mirror),GaAs/Al_{0.2}Ga_{0.8}As多重量子井戸から なる活性層(*a*-cavity),n型のAl_{0.2}Ga_{0.8}As/Al_{0.9}Ga_{0.1}As 25ペア からなる上部多層膜反射鏡を積層した構造である。下部DBR ミラー中の活性層に最も近い低屈折率層に,電流及び光閉じ込 めを行うためのAlAs(水蒸気酸化によりAl酸化層を形成する) 層を形成した。また,寄生容量低減のためポリイミド上にパッ ド電極を形成した。

今回は酸化アパーチャサイズを振った素子を作製し,各特性の評価を行い,素子(酸化アパーチャサイズ)構造の最適化を図った。

2.2 素子構造の最適化

表1に、4.25 Gbps VCSEL TOSAの仕様の一部を示す。今 回は数ある特性の中から、トランシーバの設計において最も重 要であり、酸化アパーチャサイズに対してトレードオフの関係 にある、しきい値電流、微分抵抗について報告する。なお、測 定はウエハ状態で25℃、DC駆動にて行った。また、しきい値 電流、波長、スロープ効率、微分抵抗の温度依存性に関しても 合わせて報告する。

図1 酸化層閉じ込め型VCSELの断面模式図 Schematic structure of oxide confined VCSEL.

最終的にはTOSAにアッセンブルした状態での特性が重要 となるが、ここで報告する各特性については、素子とTOSA にアッセンブルした状態での特性に差がほとんどないことか ら、今回は素子状態で最適化を行った。

項目	最小值	最大值
しきい値電流 (mA)	-	2.5
微分抵抗(Ω)	25	50
しきい値電流の温度依存性(mA)	- 1	+ 1
波長の温度依存性 (nm/℃)	-	0.07
スロープ効率の温度依存性(ppm/℃)	_	- 4500
微分抵抗の温度依存性 (ppm/℃)	_	- 3000

表1 4.25 Gbps VCSEL TOSA の仕様 Specification of 4.25 Gbps VCCEL TOSA

図2に、しきい値電流の酸化アパーチャサイズ依存性の結果 を示す。しきい値電流は酸化アパーチャサイズに対してほぼ 線形の相関であり、表1に示したTOSAの仕様を満たすために は、酸化アパーチャサイズを130 µm²以下に設定すれば良いこ とが分かる。

また、図3に、微分抵抗の酸化アパーチャサイズ依存性の結 果を示す。微分抵抗はアパーチャサイズに対して反比例の相関 であり、表1に示した仕様を満たすためには、酸化アパーチャ サイズを60~120 μm²の範囲に設定すれば良いことが分かる。

以上の結果から、しきい値電流と微分抵抗の仕様を満たすた めには、酸化アパーチャサイズを60~120 µm²の範囲に設定 すれば良いことが分かった。

次に,温度特性の結果について説明する。図4,5,6,7に, しきい値電流,波長,スロープ効率,微分抵抗それぞれの温度 依存性の結果を示す。測定はウエーハ状態で,温度範囲20~ 70℃,DC駆動にて行った。

この結果、しきい値電流の変化量は ± 0.2 mA、波長の 温度依存性は0.59 nm/℃、スロープ効率の温度依存性は - 3300 ppm/℃、微分抵抗の温度依存性は - 2500 ppm/℃が得 られ、すべての特性において表1の仕様を満たしていることが 確認できた。

3. VCSEL TOSA (速度4.25Gbps)

現在の市場での主流は、速度2.5 Gbps以下のTOSAである が、今後4.25 Gbps(ファイバチャネルの規格)への移行が急速 に進むものと思われる。そこで、今回は最大変調速度4.25 Gbps 以上を目標に開発を行った。本章では、TOSAの構造、評価結

果(静特性,温度特性,変調特性,アイパターン,信頼性)に ついて報告する。

3.1 TOSAの構造

図8に、今回開発したTOSAの写真(左上:SCバレル、右下:LCバレル)を示す。波長850 nm帯では、一般的にマルチ モードファイバ(コア径50 µmもしくは62.5 µm)が用いられ ることから、シングルモードファイバ(コア径7 µm)に比べコ ア径が大きく、結合が容易である。そこで、ファイバとの結合 部にはプラスチック製のバレルを採用した。また、APC (auto power control)駆動を可能とするために、モニタPD(photo diode)を内蔵している。VCSEL素子はサブマウントを介して TO-46ヘッダ上に実装されている。また、波長850 nm帯レー ザではFDA (Food and Drug Administration;米国食品医薬品 局) により,アイセーフティレベルがクラス1以下での使用が 規定されているため,本構造では光出力を350 μW(ファイバ カップルドパワー) 以下での使用を可能としている。

図8 4.25 Gbps 850 nm VCSEL TOSA の写真 Photograph of 4.25 Gbps 850 nm VCSEL TOSA.

3.2 TOSAの評価結果

3.2.1 静特性

図9に、25℃, DC駆動における電流対光出力, 電圧, モ ニタ電流特性を示す。しきい値電流1.8 mA, 光出力450 µW @6 mA(GI-50 マルチモードファイバとの結合効率約70%, 即 ちファイバ結合パワーは300 µWとなる), 動作電圧1.9 V @6 mA, 微分抵抗40 Q@6 mA, モニタ電流400 µA@6 mA となり, 仕様を十分に満足する特性が得られた。

図9 電流対光出力,電圧,モニタ電流特性 Current v.s. optical power, voltage and monitor current.

3.2.2 温度特性

データストレージ (SAN; storage area network) 用のトラン シーバでは、主にファイバチャネルの規格が用いられ、動作 温度範囲は0~70℃で規定されている。このトランシーバに 搭載されるTOSAでは、トランシーバ内の温度上昇を考慮し、 0~80℃での安定動作が必要である。また、用途によっては、 温度範囲 – 40~95℃という非常に厳しい条件での使用を考慮 しなければならない。そこで今回は、–40~100℃の広範囲 にわたって温度特性の評価を行った。

図10,11に、しきい値電流及びモニタ電流の温度依存性の 結果を示す。

しきい値電流の温度に対する変化量は、ファイバチャネルの

規格値0~80℃の温度範囲では±0.2 mAと非常に小さく,今回の主目的である仕様(±1 mA)を十分に満たしている。しかし, -40~100℃の温度範囲では低温度側(-10℃以下)でのしきい値電流の上昇が影響を及ぼし,しきい値電流の変化量が ±1.5 mAとなり,仕様に対して大きい。これは,ゲインピーク波長と共振器波長の差により決定されるディチューニングの量が大きいためで(0~80℃の温度範囲で最適化設計のため),設計により適宜調整可能である。

また,モニタ電流の変化量は0.1%/℃と非常に小さく,仕様の0.3%/℃を十分クリアしている。

なお,波長,スロープ効率,微分抵抗の温度依存性に関して は,素子での測定結果とほぼ同等の結果であった。

Temperature dependence of threshold current.

3.2.3 変調特性

TOSAの形態では、ワイヤのインダクタンスやTOヘッダ自体のインダクタンス及びキャパシタンスの影響により、素子単体での周波数特性に比べ、変調帯域が制限されてしまう。特に変調速度が2.0 GHzを超えると、急激にその影響が現れてくる。今回開発したVCSEL素子単体でのf_{3dB}帯域は約8 GHzであることから、素子単体での4.25 Gbps動作では支障がないものの、先に述べた実装による影響で変調帯域が制限を受けてしまう。

図12に、小信号変調特性の測定結果を示す。この結果、バ イアス電流5mA以下では緩和振動の共振ピークが4GHz以下 となっており、アイパターンへの影響が懸念される。一方、バ イアス電流6mA以上では4GHz以上の緩和振動周波数が得ら れ、またf_{3dB}帯域は5GHz以上が得られている。この結果は、 理論上4.25Gbps動作に必要な3.0GHzを十分にクリアしてい る。今回の測定に用いた素子のしきい値電流は1.8 mAである ことから,理論上4.25 Gbpsで動作させるためには,規格化し たバイアスレベル((バイアス電流値-しきい値電流)/しきい 値電流)で,約2.3以上が必要であると見積もられる。

3.2.4 アイパターン

実際のトランシーバでの動作においては、アイパターンにお ける立ち上がり、立ち下がり時間とジッタが重要である。これ らの特性は、トランシーバに搭載する際の回路や、VCSELを 駆動するドライバICによって大きく特性が左右される。トラ ンシーバに使用する回路やドライバIC等は、客先の設計によ り異なるため、今回は標準的な評価手法であるパルスパターン ジェネレータを用いた擬似ランダム信号により評価を行った。 測定に際し、TOヘッダのピンによるインダクタンスの影響を 最小限に抑えるため、TOSAはピンを短く切ってマイクロスト リップライン上にはんだにて固定している。

図13に、4.25 Gbps擬似ランダム信号(2³¹-1)におけるア イパターンの測定結果を示す。動作条件は、バイアス電流 6 mA,消光比10 dB,変調電圧0.5 Vで、測定は室温でフィル タなしの状態である。

この結果,測定が理想的な状態ではあるものの,立ち上がり, 立ち下がり時間(20~80%)はそれぞれ,38 ps,70 psで,ジッ タは20 ps以下という仕様(立ち上がり時間:90 ps,立ち下が り時間:90 ps)を十分に満足する良好な結果が得られた。

図13 4.25 Gbpsアイパターン (消光比10 dB) Eye diagram of 4.25 Gbps (Extinction ratio : 10 dB).

次に, 4.25 Gbps擬似ランダム信号 (2³¹-1) のアイパターン の温度依存性の結果から求めた, 立ち上がり時間, 立ち下がり 時間, ジッタの温度依存性について説明する。図14, 15, 16 に温度範囲 – 40 ~ 100℃のそれぞれにおける結果を示す。測 定は, 消光比10 dB, 変調電圧0.5 V, ファイバアウトの光出 力が0.3 mW 一定 (APC 駆動)の条件で行った。

この結果、ファイバチャネルの規格である温度範囲0~80℃ (トランシーバ自体は0~70℃、内部温度+10℃を想定)では、 立ち上がり時間が35~40 ps、立ち下がり時間が67~73 ps、 ジッタが18~22 psであった。また、温度範囲を-40~100℃ に拡大した場合においても、最大で立ち上がり時間40 ps、立 ち下がり時間78 ps、ジッタ24 psとなり、-40~100℃の温 度範囲において十分に仕様を満足していることが確認できた。

ただし,先に述べたように,実際の使用においてはトランシー バの回路やドライバICとのマッチングが重要であることから, 最終的にはトランシーバに搭載した状態での評価が必須であ る。

3.2.5 TOSAの信頼性

信頼性は偶発故障と磨耗故障に大別されるが,ここでは磨耗 故障の信頼性について報告する。図17に,VCSEL素子の高温 エージング試験の結果(5,000 h)を示す。また図18に,4.25 Gbps VCSEL TOSAの高温エージング試験の経過(2,000 h)を示す。 試験の条件は,温度100℃,動作電流密度10 kA/cm²,ACC駆 動(auto current control)で,サンプル数はそれぞれ20個,50 個である。

この結果,VCSEL素子及びTOSAの寿命を光出力の変化量 が初期値から2dB減少した時点と仮定した場合に,今回の両 者の推定寿命は,100℃の環境下にて約50,000時間と見積もら れる。この結果は室温の寿命に換算すると,約9,000万時間(条 件を変えた試験により導出した活性化エネルギーは1.0 eV)に 相当する。

4. 量産体制の紹介

VCSELの場合,通常の端面発光型レーザと違い,基板と垂 直方向に光を出射することから,ウエハレベルでの検査が可能 であるという特長を持つ。ここでは,この特長を生かしたウエ ハレベルで実施するバーンイン試験について紹介する。図19 に,ウエハバーンイン試験時の写真を示す。ウエハ上のパッド 電極に直接プロービングし通電を行う。また,ウエハはヒータ テーブル上に設置され過熱されている。通常バーンイン試験 は,TO-CANに実装した後に行われるため,膨大な試験装置や, 部材のコストが発生する。これに比べ本方法では,ウエハレベ ルで一括してバーンイン試験を行うことができるため,不良品 発生時の部材コスト等の削減が可能となり,量産時のコスト低 減においては有効な手段である。

図19 ウエハバーンイン試験例 Example of burn-in test on wafer.

5. おわりに

今後,市場の立ち上がりが期待されるデータコミュニケ ション用トランシーバに搭載される 4.25 Gbps 850 nm VCSEL TOSAの開発を行った。

素子構造を最適化し,最終的にTOSAでの評価を行った結 果,4.25 Gbpsでの動作をはじめ,静特性,温度特性において, 仕様を十分に満足する良好な結果が得られた。また,信頼性試 験においては、25℃の環境下で9,000万時間,100℃の環境下で 50,000時間の推定寿命が得られた。

謝辞

本研究を進めるに当たり,ご指導,ごべんたつをいただいた 東京工業大学小山二三夫教授に感謝いたします。また,貴重な ご意見,議論をいただいた半導体研究開発センター清水均博士, 影山健生博士,カシミルスセティアグン氏,品川達志博士,生 産技術部尹栄徳氏に,試作及び評価を担当した半導体研究開発 センター濱威氏,関口智則氏,平岩浩二氏,徳永訓雄氏,植田 菜摘氏,佐藤正之氏,半導体デバイス開発部の生産技術・作業 組の方々に感謝いたします。

参考文献

- K. Iga, F. Koyama, and S. Kinoshita: "Surface emitting semiconductor Lasers," IEEE. J. of Quant. Electron., 24 (1988), 1845.
- K. D. Choquette, R. P. Schneider, Jr., K. L. Lear, and K. M. Geib: "Low threshold voltage vertical-cavity lasers fabricated by selective oxidation," Electron. Lett., **30** (1994), 2043.
- 3) Y. Hayashi, T. Mukaihara, N. Hatori, N. Ohnoki, A. Matsutani, F. Koyama, and K. Iga: "Record low-threshold index-guide InGaAs/GaAlAs vertical-cavity surface-emitting laser with a native oxide confinement structure," Electoron. Lett., **31** (1995), 560.

- G. M. Yang, M. H. MacDougal, and P. D. Dupkus: "Ultra low threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation," Electron. Lett., 31 (1995), 886.
- 5) N. Ueda, M. Tachibana, N. Iwai, T. Shinagawa, M. Ariga, Y. Sasaki, N. Yokouchi, Y. Shina, and A. Kasukawa: "Transverse Mode Control and Reduction of Thermal Resistance in 850 nm Oxide Confined VCSELs," IEICE Trans. Electron., E85-C, No.1, (2002), 64.