高信頼性を有する広域温度動作(-30~70℃)型 アサーマルAWGモジュールの開発

Development of Wide-Operating Temperature Range ($-30 \sim 70^{\circ}$ C) Athermal AWG Module with High Reliability

> 長谷川淳一* Junichi Hasegawa

奈良一孝* Kazutaka Nara

概要 従来のアサーマルAWGモジュールの温度依存性の原因を明確にし、更に温度依存性を低減 させた広域温度動作(-30 ~ 70℃)型アサーマルAWGモジュールを開発した。開発したモジュール の中心波長の温度依存性は、-30 ~ 70℃において、すべてのチャンネルで±0.015 nm以下である。 また、屋外設置を想定した信頼性試験を実施し、本モジュールが極めて高い信頼性を有していること を確認した。

1. はじめに

多様化が進む光通信ネットワークを構築する上で、波長合分 波器の役割を担う AWG (arrayed waveguide grating)のアサー マル(温度無依存)化は、欠かせない要求になっている。我々は、 この要求を満たすべく独自のアサーマルAWG原理を考案し、 様々なアサーマルAWGモジュールを開発してきた1)~3)。とこ ろで、近年では、次世代通信である WDM-PON (wavelength division multiplexing-passive optical network) システムの研究 開発が、韓国を中心として盛んに行われている。このシステム では、波長合分波器を用いて、各ユーザに異なる波長の光を割 り当てるため、ユーザごとに独立した方式、速度を提供するこ とができる。その波長合分波器として、多チャンネル化、量産 化に有利なAWGモジュールを使用した試みがこれまでに数多 く報告されている4,5。図1にWDM-PONシステムの概略図 を示す。図のように、AWGモジュールは、通常のPONシステ ムで使用されている光スプリッタと同様に屋外(例えば,クロー ジャなど)に設置される。このため、AWGモジュールの要求 特性として、アサーマル化、高い信頼性、使用温度の広域化

* 研究開発本部 ファイテルフォトニクス研究所

(-30~70℃)が挙げられる。今回は、この使用温度の広域化 の要求に応えるべく、従来のアサーマルAWGモジュールの僅 かに生じる温度依存性の原因を理論的に明確にし、その現象の 理解から、中心波長の温度依存性を更に低減させたアサーマル AWGモジュールを開発したので報告する。更に、屋外設置を 想定した信頼性試験を実施し、モジュールの高い信頼性を確認 したので併せて報告する。

2. 従来のアサーマルAWGモジュールにおける 中心波長の温度依存性の原因解明

2.1 従来のアサーマルAWGの構成及び温度依存性

図2(a) に従来のアサーマルAWGの概略図を示す。一方の スラブ導波路部でAWGチップが回路ごと切断されており、補 償板である銅板にそれぞれ接続されている。温度の変化に伴う 補償板の伸縮により、出力導波路の位置を移動させることがで きる。図2(b)に温度補償のメカニズムを模式的に示す。温度

図2 アサーマル AWGの構造の概略図 Schematic configuration of athermal AWG. 制御型AWG(温度制御無しの場合)は、温度が変化すると、図 に示すように集光位置がシフトし、中心波長が変化する。一方、 アサーマルAWGは、温度が変化すると、同様に集光位置はシ フトするが、そのシフトした位置に銅板の伸縮により、出力導 波路を移動することができるため中心波長は補償される。その 移動距離は銅板の長さで調整される。図3に従来のアサーマル AWGモジュールの中心波長の温度依存性を示す。その温度依 存性は僅かに下に凸の形状を有しており、一般的な局内の仕様 である使用温度範囲-5~70℃において、中心波長の温度依存 性は±0.015 nm以下を実現している。しかしながら、使用温度 範囲を更に拡大させると、その値は大きくなり、実用上無視で きなくなってしまう。このため、AWGモジュールが、使用温 度の広域化が求められるWDM-PONシステムに適用されるため には、中心波長の温度依存性を更に低減することが求められる。

図3 従来のアサーマルAWGモジュールの温度依存性 Temperature dependence of conventional athermal AWG module.

2.2 下に凸の中心波長温度依存性の原因の理論的解明

初めに、下に凸の中心波長の温度依存性が生じる原因につい て、我々はAWGの温度依存性の主な原因であるAWGを構成 する石英系ガラスの屈折率温度依存性に着目した。一般に石英 系ガラスの屈折率温度依存性dn/dT~8×10⁻⁶と一定値で表 現されている。しかしながら、実際は一定値ではなく、この屈 折率温度依存性自体が温度Tの関数となっていることが報告さ れている⁶。石英系ガラスの屈折率nは波長依存性も含め、式 (1)に示すセルマイヤー多項式で表される。

$$n = \sqrt{1 + \sum_{i=1}^{3} \frac{a_i}{b_i^2 - (hc/\lambda)^2}}$$
(1)

ここで、h: プランク定数、c: 光速、 λ : 波長であり、更に a_i 、 b_i は式 (2) で表される温度特性を考慮したセルマイヤー係数で ある。 a_i は調和振動子の振動強度、単位体積当たりの振動数に 依存し、 b_i は振動子の共鳴エネルギーに依存している。

$$a_{i} = a_{i0} + a_{i1}T + a_{i2}T^{2}$$

$$b_{i} = b_{i0} + b_{i1}T + b_{i2}T^{2}$$
(2)

ここで, 各パラメータを表1に示す。

以上の式(1),式(2)及び表1を用いて石英系ガラスの屈折 率温度依存性を計算すると,屈折率温度依存性は,図4に示す ように,ほぼ直線的な特性になる。これは,石英系ガラスの屈 折率は,温度に対して2次曲線的に変化することを意味している。

表1 温度特性を考慮したセルマイヤー係数のパラメータ Sellmeier's parameters considering temperature dependence.

		i=1	i=2	i=3
a_{i0}	eV2	228.7018	46.40806	0.014173
a_{i1}	eV²/℃	4.930E-05	-3.270E-05	-1.704E-06
a_{i2}	eV2/°C2	1.100E-07	-3.780E-08	-2.140E-09
b_{i0}	eV	18.11163	10.671082	0.125
b _{i1}	eV/°C	9.150E-06	-2.991E-04	0
b_{i2}	eV/℃2	7.478E-08	-4.807E-07	0

続いて、AWGの中心波長の温度特性を計算する。今回計算 に用いたAWGの回路パラメータを**表2**に示す。

表2 AWGの回路パラメータ Circuit parameters of AWG.

Channel spacing (GHz)		100
Channel number		40
Focal length of slab waveguide (mm)	L f	17.2
Diffraction order	т	29
Pitch of adjacent arrayed waveguide (μm)	d	13.8
Path length difference of arrayed waveguide (μm)	ΔL	31.0
Group index of arrayed waveguide at R.T.	$n_{\rm g}$	1.4760
Effective index of slab waveguide at R.T.	ns	1.537
Effective index of arrayed waveguide at R.T.	n _c	1.4514

これらのパラメータを用いて、AWGの中心波長λは式(3) で与えられる。

 $\lambda = \frac{\Delta L}{m_c} n_c$

この式(3)より、中心波長温度特性を把握するためには n_c の 温度変化を正確に見積もる必要がある。そこで、式(1)及び式(2) を用いて算出した値をクラッドガラスの屈折率とし、その値に 一律に Δ =0.8%を上乗せした値をコアガラスの屈折率とし、更 に膜厚及び線幅を6.5 μ mの条件のもと、等価屈折率法を用いて、 n_c の温度変化を計算した。

一方,我々のアサーマルAWGは銅板の線膨張率を利用し, ほぼ直線的に温度補償をしている。使用温度範囲を-5~70℃ とし,その温度範囲において,中心波長の温度依存性が最も小 さくなるように銅板の長さを調整している。

以上の議論をもとにAWGの中心波長の温度特性, 銅板を使 用した温度補償, 更にはそれらから求められる従来のアサーマ ルAWGの中心波長温度特性の計算結果を図5(a)に示す。い ずれの場合も20℃で設計波長に合致するように規格化してい る。銅板による温度補償はほぼ直線的に変化するのに対して, AWGの中心波長の温度特性は,石英系ガラスの屈折率温度依 存性が一定値ではないため,2次曲線的に変化している。この ため,補償後の中心波長の温度依存性は僅かに下に凸の形状を 有することになる。この一連の計算より,アサーマルAWGの 中心波長の温度特性が下に凸の形状となる原因は,2次曲線変 化を持つAWGの中心波長温度特性が,ほぼ直線変化を有する 銅板によって補償されることにあることが分かった。また, 図5(b)に示すとおり,計算より得られた温度依存性は,実測 したアサーマルAWGモジュールの中心波長の温度特性と一致 している。

図5 アサーマル AWGの中心波長の温度特性 Temperature dependence of the center wavelength of conventional athermal AWG.

3. 完全にアサーマル化するための補償板の線膨張特性

上記の計算結果より,直線変化ではないAWGの中心波長温 度特性と一致する補償板が存在すれば,完全にアサーマル化で きることになる。そこで,補償板に要求される線膨張特性を算 出した。まず,アサーマルAWGで使用する位置補償量dxは表2 に示すAWGの回路パラメータを用いて式(4)で与えられる。

$$d\mathbf{x} = \frac{L_f m}{n_s d} \frac{n_g}{n_c} \left(\frac{d\lambda}{dT}\right) (T - 20)$$
(4)

ここで、温度は20℃からの変化量として記述した。更に、 中心波長の温度依存性dλ/dTは以下の式(5)で与えられる。

$$\frac{\mathrm{d}\lambda}{\mathrm{d}T} = \frac{\lambda}{n_{\rm c}} \left(\frac{\mathrm{d}n_{\rm c}}{\mathrm{d}T}\right) + \lambda\alpha_{\rm s} \tag{5}$$

ここで、 α_s はAWGの基板材料であるシリコンの線膨張係数 (α_s =3.0×10⁻⁶/ \mathbb{C})である。図6に式(4)、式(5)及び式(3)を 用いて、完全にアサーマル化するための位置補償量dxを計算 した結果を示す。

この図から、求められる位置補償量dxは温度に対して、2次 曲線変化を有していることが分かる。更に、dxの温度依存性 d(dx)/dTを計算すると、式(6)で表される。

$$\frac{d(dx)}{dT} = (6.74 \times 10^{-4})T + 0.237 \tag{6}$$

d(dx)/dTの変化率を満たす材料を補償板として選定すれば、 完全にアサーマル化できることになる。図7に計算されたd(dx)/dTの変化率と一般的な金属材料の変化率との比較を示す。こ の計算された変化率は、金属材料にとって極めて大きな値であ ることが分かる。そこで、我々は、金属材料の中でもd(dx)/dTの変化率が大きい材料である純アルミニウム (JIS A1050) を選定した。

Comparison of the rate of change of dx with metal materials.

4. 作製結果

FHD法,フォトリソグラフィ,反応性イオンエッチングを 組み合わせたPLC作製技術で,100 GHz-40 chのAWGチップ を作製した。そのチップをスラブ導波路部で切断し,補償板と して純アルミニウム (JIS A1050)板を接続し,アサーマル化を 行った。その後,AWGチップにファイバアレイを接続し,パッ ケージングを行った。図8に作製したアサーマルAWGモ ジュールの外観写真を示す。パッケージサイズは130×65× 8.5 mmと小型化及び薄型化を実現している。

図8 100 GHz-40 chアサーマル AWGモジュールの外観 Appearance of athermal AWG module.

図9に100 GHz-40 chアサーマルAWGモジュールのスペク トラムを示す。挿入損失2.5 dB(1.8~2.5 dB)以下,クロストー ク-30 dB以下の良好な光学特性が得られた。なお、アサーマ ル化による光学特性の劣化は無かった。

図10に中心波長の温度依存性を示す。比較のために銅板で 作製した従来のアサーマルAWGモジュールの温度依存性も併 せて示す。純アルミニウムで作製したモジュールの温度依存性 は、すべてのチャンネルで、-30~70℃において±0.015 nm 以下を実現しており、従来よりも大幅に低減されていることが 分かる。また、挿入損失変動は±0.1 dB以下であった。図11 にスペクトラムの温度依存性を示す。いずれの温度においても スペクトラムの劣化は見られず、その他の光学特性も安定して いることを確認した。

図10 中心波長の温度依存性 Temperature dependence of center wavelength.

5. 屋外設置を想定した信頼性試験

これまでに、我々はこのアサーマルAWGモジュールの信頼 性特性評価のため、Telcordia GR-1221及びGR-1209に準拠し た一連の試験を実施し、問題のないことを確認してきた¹⁾。し かしながら、屋外使用時には、過酷な環境下に置かれる可能性 があるため、モジュールの極めて高い信頼性が求められる。そ こで、屋外設置時のモジュールに起こりうるあらゆる状況を想 定し、衝撃、振動印加時の挿入損失のモニタリング試験、浸水 試験、更にはTelcordia GR-1221を超えた長期間の高温高湿試 験及びヒートサイクル試験を実施した。

初めに、図12にモニタリング試験の測定構成を示す。波長 可変光源及び波長計を使用してモジュールに光を入射させ、指 定のサンプリング周期で各試験において挿入損失変動をモニタ した。なお、図12に示す各方向 (Direction A, B, C) におい てそれぞれ挿入損失変動を測定した。図13 (a) にモニタリング 衝撃試験 (50 G, 5 times, 6 directions) 結果及び (b) にモニタ リング振動試験 (20 G, 20-2000 Hz, 4 min/cycle, 4 cycles/ axis) 結果をそれぞれ示す。各方向ともに衝撃や振動印加時に 挿入損失変動は全く無いことが分かる。図14 に浸水試験 (43 ± 2℃, pH5 ± 0.5, 336 h) 結果を示す。各図は、初期値からの 変動を示している。浸水 336 h後においても中心波長変動, 挿 入損失変動はほとんど見られなかった。また,図15 (a), (b) に, 高温高湿試験 (85℃, 85%RH, 5000 h) 及びヒートサイクル試 験 (-40 ~ 85℃, 1650 cycles) の結果をそれぞれ示す。これら

図12 モニタリング試験構成と試験方向 Outline of monitoring tests and test directions.

11

の長期に渡る過酷な試験に対しても、中心波長及び挿入損失は 非常に安定している結果が得られた。以上の試験結果から、こ のアサーマルAWGモジュールは極めて高い信頼性を有してお り、屋外に設置できる強固なモジュールであることを確認した。

6. おわりに

我々は、従来のアサーマルAWGモジュールの中心波長の温 度依存性の原因を理論的に明確にし、その温度依存性を更に低 減させた屋外に設置可能な、アサーマルAWGモジュールを開 発した。開発したモジュールは、-30~70℃の温度範囲に対 して、中心波長の温度依存性±0.015 nm以下を実現しており、 極めて高い信頼性を有している。

参考文献

- 1) T. Saito et al.: OFC2003, MF47, (2003), 57.
- 2) J. Hasegawa et al.: OFC2005, OTuD5, (2005).
- 3) J. Hasegawa et al.: OECC2005, 7E3-3, (2005).
- 4) D. J. Shin et al.: OFC2005, PDP36, (2005).
- 5) Soo-Jin Park et al.: Journal of Lightwave Tech., **22** (2004), 2582.
- J. Matsuda et al.: Journal of Non-Crystalline Solids, 135 (1991), 86.