ファイバ型繰返し周波数可変超短パルス光源の開発

Repetition-Rate Tunable Ultra-Short Pulse Light Source Using Fiber Pulse Compressor

松下俊一*	小栗淳司*	篠崎淳一*	阿久津剛史	* 井上 崇*
Shun-ichi Matsushita	Atsushi Oguri	Jun-ichi Shinozaki	Takeshi Akutsu	Takashi Inoue
味村 裕*	岡村和郎*	内野竜嗣*	加木信行*	* 高橋正典*
Yu Mimura	Kazurou Okamura	Tatsuji Uchino	Nobuyuki Kagi	Masanori Takahashi
廣石治郎*	谷口友	規* 八木	: 健*	坂野 操*2
Jiro Hiroishi	Yuki Tanigu	ıchi Take	eshi Yagi	Misao Sakano

概要 フェムト秒光パルスを出力する超短パルス光源は,超高速分光などの研究開発から,THz波 発生やバイオ・医療,計測機器,材料加工など次世代の新技術開発に幅広く応用されている。これら 次世代技術を実用化するため,光源は,高い安定性,長期信頼性,簡単な操作性が要求される。我々 は,光通信の研究開発で培った光ファイバやEDFA (erbium-doped fiber amplifier)をはじめとする サブシステムの技術を活用し,これらの課題を克服した1550 nm帯域100 fs出力の繰返し周波数可 変超短パルス光源の開発に成功した。本稿では,光源に用いているフェムト秒超短パルス発生技術と その特性を紹介する。

1. はじめに

1990年代初頭にフェムト秒光パルスを発生させるモード ロックチタンサファイアレーザが市販されると、超短パルス光 は多くの分野で幅広く研究に使われ始めた。光パルスの時間幅 が10兆分の1秒や100兆分の1秒という、フェムト秒(femtosecond: fs = 10^{-15} 秒) オーダの極めて短い値であることや、そ の尖頭値がキロワットやメガワットと極めて大きいことによ り、原子や分子、半導体などの光学応答を調べる超高速分光に 利用されたり、誘電体の非線形光学応答を利用したパラメト リック波発生や多光子励起に、その他、微細加工などに応用さ れた。1990年代後半に入ると、例えば、フェムト秒レーザを 用いた光伝導アンテナによるテラヘルツ波の発生と検出が報告 され、未踏の領域であったテラヘルツ波の利用を現実的なもの にした。再生増幅器やchirped pulse amplificationなどの,超 短パルスを高出力に光増幅する方法の進歩により、金属の高精 度微細加工や透明物質の3次元加工が可能になり、バイオ・医 療分野では、生体細胞の加工や多光子励起イメージングなど、 新しい技術が数多く提案された1)。現在, 超短パルス光源を用 いたこれらの応用技術の実用化が期待されている。

これまで,ピコ秒やフェムト秒の光パルスを実現する現実的 な手段は,チタンサファイア結晶を代表とする固体モードロッ クレーザが主流であった。これらの固体レーザは,振動や温湿

*2 研究開発本部 横浜研究所

度などの動作環境の管理や、専門の技術者による定期的な光学 系の調整が必要だった。光源をシステムの一部品として使用す る応用技術の分野では、光源は、小型、安定、堅牢、安価で操 作が簡単であることが望まれる。これらの要請から、光通信分 野で既に実用化の実績があり、光学的に安定でかつ堅牢な光 ファイバを共振器に利用するファイバ型モードロックレーザ²⁾ や、光ファイバの非線形性を利用するパルス圧縮技術を使った 超短パルス発生方法³⁾が提案され、昨今、実用的な超短パルス 光源として注目を集めている。

当社では、超高速光通信の信号処理に用いる光パルスの生成 手段として、CPF (comb-like profiled fiber)技術⁴⁾を提案し、 数ピコ秒から10ピコ秒程度の光パルスを数100 fsから100 fs程 度まで圧縮するファイバ型光パルス圧縮技術を実現している。 CPFは、非線形性がシングルモード光ファイバ (single mode fiber:SMF)の10から20倍である高非線形光ファイバ (highly nonlinear fiber:HNLF)と、分散補償用のSMFを交互に多段 に接続する構成で、非線形効果と分散効果を長手方向に制御す ることで光パルスを圧縮するパルス圧縮ファイバである。図1 にCPFの構成を示す。また、CPFを用いた光パルス圧縮の代 表例を表1に示す。入出力する光パルスの多様な時間幅や特性 に応じて様々な圧縮器を実現しており、CPFは設計により多 種多様な要求仕様に対して柔軟に対応できることが分かる。

^{*} 研究開発本部 ファイテルフォトニクス研究所

図1 CPF 光パルス圧縮器の構成と分散と非線形の分布 Schematic of CPF pulse compressor and longitudinal profiles of fiber dispersion and nonlinearity.

我々はこの光パルス圧縮技術と,光通信分野で培ったエルビ ウム添加型光ファイバ (erbium doped fiber:EDF) や分散補償 光ファイバ (dispersion compensating fiber:DCF),HNLFな どの特殊光ファイバの設計製造技術や,光増幅技術を応用し, 1550 nm帯域のフェムト秒光パルスを安定に出力し,パルスの 繰返し周波数が可変であるという特長を持つ超短パルス光源を 開発した。本稿では,これらの要素技術と開発した試作機の特 性及び安定性を紹介する。

2. 繰返し周波数可変超短パルス光源

光源は**図2**に示すように、ピコ秒種光パルス発生技術、CPF 光パルス圧縮技術、光パルス増幅及びフェムト秒圧縮技術の3 つの要素技術で構成されている。

ピコ秒種パルス光源には、高速のLN変調器や、カスケード 接続したEA変調器を用いて光パルスを切り出す外部変調方 法、半導体やファイバ型モードロックレーザなどの数ピコ秒や サブピコ秒のモードロックレーザを用いる方法、利得スイッチ 動作 (gain switch:GS) させたDFB-LD (distributed feedback laser diode)を用いる直接変調方法などが考えられる。この中 で、外部同期が可能であり、繰返し周波数可変性など光源とし ての柔軟性を有し、更にコストと製造性に優れていることを条 件として検討した結果、本光源では市販のDFB-LDを用いて 比較的容易に10ピコ秒程度の光パルスを発生する利得スイッ チ動作DFB-LD(GS-DFB-LD)を種光パルス光源に採用した。 GS-DFB-LDの光パルス発振条件は,DFB-LDに入力する電気 信号の振幅と印加するDCバイアスを調整することで任意の繰 返し周波数に対し一意に決まる。そのため、これらのパラメー タを適宜調整することで、繰返し周波数可変性をもつピコ秒種 パルス光源となる。

図2 超短パルス光源の構成 Configuration of ultra short pulse light source GS-DFB-LD : Gain switched distributed feedback laser diode DCF : Dispersion compensating fiber EDFA : Erbium doped fiber amplifier CPF : Comb-like profiled fiber SMF : Single mode fiber

続いて、種光源より発生された光パルスをCPF光パルス圧 縮器により、ペデスタル特性などのパルス品質を高く保ったま まその時間幅を、CPFが得意とする1ps程度以下まで圧縮す る。ここで、CPFによる高品質パルス圧縮を行うことは、後 段のフェムト秒パルス発生の効率と品質を高めるうえで、極め て重要である。なおCPF中の光パルス伝搬に関しては、単一 パルスの振る舞いにのみ注目すればよく、入力パルス列の繰返 し周波数には依存しない。つまり、ピークパワーや時間幅など 単一パルスとしてのパラメータが規定値どおりであれば、繰返 し周波数を変化させても同じ出力パルス波形を得ることが可能 であることから、CPFは繰返し周波数可変光源用のパルス圧 縮器として適していると言える。

最後に、CPFから出力される1ps程度の光パルスを高パワー に光増幅し、更に時間幅を100fs程度に圧縮するために、 EDFAとSMFを用いる。EDFAでは、光増幅と同時にEDF中 での自己位相変調(self phase modulation:SPM)によるスペク トル広がりが発生し、続いて出力用のSMFの分散効果によっ

中心波長 CPF 段数 入力光パルス幅 出力光パルス幅 繰返し周波数 CPF一段あたり 光パルス生成方法 圧縮比 文献 (ps) (ps) (GHz) (nm) (段) の平均圧縮比 Beat 3.125 4.2 0.75 160 1550 6 1.276) 1555 Beat 3.125 0.32 160 40 9.8 1.06 7)Beat 0.5 0.1 1000 1551 15 50 1.11 8) LN 変調器 (CSRZ) 12.5 3.3 1540-1560 3.8 1.25 9) 40 6 LN 変調器(RZ) 1530-1610 1.30 10) 8.5 1.8 40 6 4.7 LN変調器(RZ) 1530-1570 8.5 3 40 3 2.8 1.42 11) LN 変調器 (RZ) +Soliton Conv 0.1 40 1530-1610 5 40.0 2.09 12)4 モードロックLD 2.4 0.89 10 1550 4 2.7 1.28 13) モードロックLD 0.39 1550 3 14)2.6 10 6.7 1.88 利得スイッチDFB-LD 0.005-0.5 11.5-16.5 0.5 1558 23-33 1.27-1.31 15)

表1 CPF光パルス圧縮の代表例 Examples of pulse compression results using CPF.

て,帯域が広がった光パルスの時間幅が圧縮される。この圧縮 は非断熱圧縮であり,簡易な構成で大きな圧縮率を実現するた めに有効な方法である。

以上のように、GS-DFB-LDを種光パルス光源に用いて5 ps程 度の光パルスを発生し、CPFによって時間幅を1 ps程度まで高 品質に圧縮した後、EDFAとSMFによる高パワーのフェムト秒 パルスを得る構成を採用することにより、安定に動作し、更に 繰返し周波数が可変かつ外部同期可能であるという特長を有す るパルス光源を小型で実現することが可能となる。

SRP 法を用いた CPF 設計ツールの開発

HNLFとSMFペアをCPFの一段と定義すると、CPF光パル ス圧縮器の出力光パルスの品質は、CPF-段当たりの圧縮率 が1つの指針になる。CPF一段当たりの圧縮率を大きくすると、 CPFの総段数は少なくできるものの, 一段当たりに必要な非 線形効果が大きくなることから、結果的に出力パルスのペデス タルが大きくなる。一方, CPF一段当たりの圧縮率を小さく すると、CPFの段数が多数必要になるが、一段当たりに必要 な非線形効果は小さくなり、出力パルス波形はガウス関数や Sech²関数に近づいて、低ペデスタルのパルスが得られる。こ のように、CPFは段数に応じてパルス品質が変わるという特 徴を示す。一方で各段のファイバ長を最適化する必要がある。 設計自由度が高く、作製も容易なCPF型光パルス圧縮器を実 用化するに当たり、圧縮器の製造性を考慮すると、入出力の光 パルスの時間幅や品質について再現性の高い設計手法が必要で ある。ところが、与えられたパルス圧縮仕様に対して、段数や ファイバ長などを一意に決定する方法は過去に知られておら ず、従来は、試行錯誤にもとづく設計に頼っていた。そこで我々 は, SRP (stationary rescaled pulse) 法というシステマティッ クなCPF設計方法を見出し、これを設計ツールとして具現化 することで、CPFの設計を大幅に簡略化することに成功した。 次にその詳細を示す。

SRPとは、CPF一段に相当する一組のHNLFとSMFからな る伝送路を考えたとき、入出力パルス形状が変数変換 (rescaling)によって記述され、相似形になる非線形定常光パ ルスである⁵⁾。変数変換は入出力パルスの時間幅の比で定義さ れる圧縮率を含み、パルス形状はこの圧縮率で特徴づけられる。 そこで、入力パルス及び使用する光ファイバについて与えられ たパラメータを用いてCPFを設計する際、全体の圧縮率と段 数から一段当たりの圧縮率を導出し、それをパラメータとして 持つSRPの形状を数値計算によって導出することによりCPF 一段の設計、すなわちHNLFとSMFの長さを決定できる。 SRPを用いたCPF設計の特長として、CPF一段の構成が決定 できれば、後段の設計すなわち任意の段における各ファイバの 長さを変数変換によって一意に決定することができる。その結 果、出力パルスの時間幅や品質に関する仕様を満たす圧縮器の 設計をシステマティックに行うことが可能となる。

我々は以上のような方法にもとづき、CPF設計を自動で行い、パルス圧縮シミュレーションを実行して表示するGUIを 備えたソフトウェアを開発した。一例として、SRP法を用いた CPF設計ソフトによるパルス圧縮シミュレーションの結果を 図3に示す。このソフトを用いて設計したCPFによる光パル ス圧縮結果と実験結果の比較例を図4に示す。図4上段は、2.5 psの入力光パルスを、下段はSRP法で設計した6段CPFによ り圧縮された0.5 psの光パルスを示している¹⁶。図4で実線は SRP法を用いたシミュレーション結果を、点線は実験結果を示 しているが、両者はよく一致していることが分かる。

SRP法を採り入れたCPF専用設計ツールを開発したことで, 光パルスの圧縮品質やパルス幅,製造性などを考慮したCPF 光パルス圧縮器を容易かつ自在に設計することが可能となり, 実用化に向けて大きく進歩したと言える。

図3 SRP法を用いたCPF設計ソフトによる光パルス圧縮シ ミュレーション Simulation result of CPF pulse compression using SRP design.

4. 超短パルス光源試作機の開発

超短パルス光源は図2に示すように、GS-DFB-LD光パルス 発生部、CPF光パルス圧縮器、EDFAで構成される。本節では、 超短パルス光源の各要素に関して、設計と出力結果について述 べ、開発により得られた成果を具体的に示す。

ピコ秒種光パルス発生に用いたGS-DFB-LDは、直接変調型

DFB-LDに数100 ps程度の電気パルスを入力し共振器内の利 得を電気的に高速に変化させることで10 ps程度の光パルスを 発生させている。発振繰返し周波数は、外部入力する電気パル スの繰返し周波数に依存するため、電気パルス源にシンセサイ ザやパルスパターンジェネレータを用いれば、数 kHz~ 1 GHz程度の範囲で繰返し周波数を所望の値に設定できるのが 特徴である。光源として独立に動作させるためには、光源内部 に利得スイッチ動作に必要な電気パルスを発生させる機構が必 要になる。そこで、我々は繰返し周波数可変の電気パルス発生 機構を持つGS-DFB-LD駆動回路基板を新たに開発した。**図5** にそのブロック図を示す。

図5 利得スイッチ動作用 DFB-LD 駆動回路基板のブロック図 Block diagram of GS-DFB-LD driver circuit.

繰返し周波数は、VCO (voltage controlled oscillator)と分周 器を用いて約1 Hz から1 GHz まで対応している。また、外部 電気信号入力端子を持ち、例えばシンセサイザなどの外部信号 に同期させることも可能である。基板は148×105 mmと郵便 はがき程度の大きさで、直接変調型DFB-LDを搭載すること で繰返し周波数可変のピコ秒光パルス発生光源となる。

1 MHzから1 GHzまで周波数を変化させた際の利得スイッ チ動作DFB-LD出力光パルスのスペクトルとパルス半値全幅 の繰返し周波数特性を図6,図7にそれぞれ示す。図6より, 繰返し周波数を変化させても、スペクトル形状はほぼ同一であ ることが分かる。また、光パルスの半値全幅は、若干繰返し周 波数に依存するが、14 ps ± 1.5 psの範囲で安定に出力している ことが分かる。光パルス幅の変動がこの程度の範囲であれば、 CPFに入力する光パルスの強度を直前のEDFAの増幅率を調 整することでCPF光パルス圧縮後の時間幅をほぼ同一にする ことが可能である。

GS-DFB-LDから出力される光パルスは、直接変調に起因す る周波数チャープを持っている。そのため、DCFの分散効果 を用いてこの周波数チャープを補償すると、光パルスは約5.8 psの時間幅まで圧縮された。図8上段にその結果を示す。続い て、この光パルスを入力光とし、SRP法を用いてCPF光パル ス圧縮器を設計した。コストや大きさ、製造性を考慮し、CPF 一段の圧縮率を約1.34とし全体で5.8 psから約1 psまでに圧縮 する6段構成とした。図8下段にCPF光パルス圧縮器により圧 縮された光スペクトルと自己相関波形を示す。5.8 psの入力光 パルスが約1.0 psまで高品質に圧縮されていることが分かる。 このときの出力パルスの時間バンド幅積は0.31とSech²型の値

図6 利得スイッチ動作DFB-LD出力光パルスのスペクトル (1 MHz -1 GHz) Spectra of optical pulse from GS-DFB-LD. (1 MHz -1 GHz)

図7 利得スイッチ動作DFB-LD出力光パルスの半値全幅の 周波数特性(1 MHz - 1 GHz) Repetition-rate dependence of optical pulse width (FWHM) from GS-DFB-LD(1 MHz - 1 GHz).

図8 パルス圧縮器の入出力光パルスのスペクトルと時間波形 (上段)入力,(下段)出力 Spectra and autocorrelation traces of input and output

Spectra and autocorrelation traces of input and output optical pulse of CPF.

Upper: Input optical pulse from GS-DFB-LD, Lower: Output pulse from CPF

と等しく、断熱ソリトン圧縮に近いことを示している。

この6段CPFを1つのコイルに巻き取り筐体収納したCPF光 パルス圧縮モジュールの外観を図9に示す。大きさは、35 mm × 125 mm × 135 mm と一般的なDVDケースとほぼ同等の底面 積である。

図9 CPF 光パルス圧縮器の外観(左) CPF pulse compressor module.(Left)

CPF光パルス圧縮器により約1 psまで圧縮した光パルスを EDFAに入力し、増幅と同時にEDF中の非線形性を利用して 更に圧縮を行っている。具体的には、正常分散EDF中のSPM によるスペクトル拡大を利用し、出力用のSMFで分散補償を 行っている。その結果、出力光パルスを100 fsまで圧縮するこ とに成功した。図10及び図11に10 MHzから250 MHzまで繰 返し周波数を変化させた際のスペクトルと自己相関波形を示 す。各EDFAの増幅率を調整することで、10 MHzから250 MHzまでの間で繰返し周波数に依存しない100 fs光パルス出 力を実現している。出力は、いずれも0.5 nJである。

図10 試作機の出力光パルスのスペクトル (10 MHz - 250 MHz) Spectra of output pulse from prototype. (10 MHz - 250 MHz)

ここでは、繰返し周波数の上限を250 MHzとしているが、 これは最終出力の増幅用に用いているEDFAの飽和出力に依 存している。より飽和出力の高いEDFAを用いれば、原理的 に250 MHz以上の繰返し周波数においても同様の結果が期待 できる。

以上に述べた各要素技術をそれぞれモジュール化し、試作機

図11 試作機の出力光パルスの自己相関波形 (10 MHz - 250 MHz) Autocorrelation traces of output pulse from prototype.

(10 MHz - 250 MHz)

- 図12 繰返し周波数可変超短パルス光源試作機の外観 Prototype of repetition-rate tunable ultra short pulse light source.
- **表2** 繰返し周波数可変超短パルス光源試作機の特性 Characteristics of prototype of repetition-rate tunable ultra short pulse light source.

光学仕様					
項目	単位	仕様			
繰返し周波数	MHz	10-250			
パルスエネルギー	nJ	0.5			
平均パワー	mW	125			
パルス幅	ps	< 0.3			

機構仕様					
項目	単位	仕様			
重量	kg	8.5			
サイズ	$mm(W \times D \times H)$	$325 \times 291 \times 127$			
消費電力	W	250			

としてまとめたその外観を図12に、そして特性を表2に示す。 試作機は、USB接続されたPCによりパラメータを入力するこ とで、繰返し周波数を任意に設定することができる。また、シ ンセサイザやパルスパターンジェネレータなどの外部周波数源 と同期させることや、トリガ出力端子から内部周波数源の信号 を取り出せるため、光源を利用するシステムに容易に同期させ ることが可能な構成となっている。光パルスは筐体前面のコネ クタロから光ファイバにより出力される。

本光源は、高い信頼性や長時間の安定動作を特性目標として いる。そこで、使用環境として想定している厳密な温度管理の されていない室内において長時間安定動作試験を行った。出力 の長時間連続測定と動作環境温度の測定結果を図13に示す。 繰返し周波数50 MHz時の光パルス出力の安定性を測定した結 果、20~26℃の範囲で平均出力に対し±2.3%の安定な2000時 間以上の連続出力を確認した。

図13 連続動作試験結果 2000時間 Result of long term operation. (2000 hours)

5. おわりに

CPFを用いた光パルス圧縮技術と、光通信で培われた EDFAをはじめとするサブシステム技術を応用し、小型、安定、 更に取り扱いが容易な1550 nm帯域のフェムト秒超短パルス 光源を開発した。本光源は、GS-DFB-LDを用いたピコ秒光パ ルス発生光源と、独自に開発したCPF光パルス圧縮器、及び EDFAで構成されている。CPF光パルス圧縮器の設計にSRP 法を用いることで、製造性やコストを考慮した自由度の高い設 計と高い再現性を実現した。利得スイッチ動作DFB-LDから 出力される光パルスをDCFで分散補償し約5.8 psの光パルス を発生させ、ピコ秒種パルス光源に用いた。このピコ秒種パル スをCPFにより約1 psにまで圧縮し、正常分散EDFAと出力 用のSMFにより増幅と圧縮を同時に行うことで、100 fs、 0.5 nJの超短光パルスを実現した。試作した光源は、繰返し周 波数を10 MHz ~ 250 MHzの間に任意に設定することができ、
外部同期が可能である。

本光源は、光通信分野で信頼性や動作実績のある光ファイバ をはじめ、DFB-LD、EDFA を活用しているため、高い信頼 性を有しており、既に2000時間以上の安定した連続動作を確 認している。

これまで,多くのレーザが研究室から飛び出し産業技術の技 術革新に貢献したように,本光源も多くの産業応用に利用され 技術革新に貢献することを期待したい。

謝辞

本光源は,NEDO 産業技術実用化開発助成事業の支援を受けて開発された。また,研究開発及び試作に当たり多く協力や 支援を得ている。関係諸氏に深く感謝する。初期の研究開発に 貢献をされた,五十嵐浩司氏,並木周氏に深く感謝する。

参考文献

- 平尾一之, 邱 建栄 編:フェムト秒テクノロジー-基礎と応用, 化学同人
- K. R. Tamura, E. P. Ippen, H. A. Haus and L. E. Nelson: Opt Lett 18 (1993), 1080.
- 3) K. R. Tamura and M. Nakazawa: Optic. Lett. 26 (2001), 762.
- 4) M. Tadakuma, O. Aso and S. Namiki: OFC 2000, ThL3 (2000).
- 5) T. Inoue and S. Namiki, Laser & Photon. Rev. 2 (2008), 83.
- K. Igarashi, J. Hiroishi, T. Yagi and S. Namiki: Electron. Lett. 41 (2005), 688.
- Y. Ozeki, S. Takasaka, T. Inoue, K. Igarashi, J. Hiroishi, R. Sugizaki, M. Sakano and S. Namiki: Photon. Technol. Lett. 17 (2005), 1698.
- Y. Ozeki, S. Takasaka, J. Hiroishi, R. Sugizaki, T. Yagi, M. Sakano and S. Namiki: Electron. Lett. 41 (2005), 1048.
- K. Igarashi, S. Takasaka, R. Miyabe, J. Hiroishi, R. Sugizaki, T. Yagi and S. Namiki: CLEO2004, CFC2 (2004).
- 10) T. Inoue and S. Namiki: ECOC 2005, Mo3.5.2 (2005).
- R. Miyabe, T. Inoue, Y. Mimura, J. M. Fini, D. J. Trevor, J. Hiroishi, R. Sugizaki, M. Sakano and T. Yagi: OFC 2006, OthA3 (2006).
- 12) T. Inoue, N. Kumano, M. Takahashi, T. Yagi and M. Sakano: J. Lightwave Technol. 25 (2007), 165.
- 13) M. Takahashi, T. Inoue, Y. Taniguchi, M. Tadakuma, R. Sugizaki, M. Sakano and T. Yagi: OECC 2006, 6F (2006), 1.
- 14) T. Inoue, Y. Taniguchi, J. Hiroishi, T. Yagi and Y. Mimura: Opt. Lett. **32** (2007), 2695.
- 15) K. Igarashi, H. Tobioka, A. Oguri, T. Akutsu, S. Namiki, M. Sakano, R. Kawahara, K.Okamura, Y. Aoyagi and N. Kagi: CLEO 2005, CTuCC4 (2005).
- 16) M. Takahashi, T. Inoue, Y. Taniguchi, M. Tadakuma, M. Sakano and T. Yagi: OFC/NFOEC 2007, OTuJ4 (2007).