電子線ホログラフィによる化合物半導体のキャリア分布の観察

Observation of Carrier Distribution in Compound Semiconductors Using Electron Holography

> 佐々木宏和* 大友晋也* 松田竹善* 石井宏辰* Hirokazu Sasaki Shinya Ootomo Takeyoshi Matsuda Hirotatsu Ishii

概要 電子線ホログラフィを用いると、半導体のキャリア分布を観察できることが広く知られてお り、Si半導体については多くの研究例がある。本研究では、化合物半導体のキャリア分布を観察す ることを目的として、試料作製及び観察手法の最適化を行った。GaAsの半導体について、pn接合が 明瞭に観察できるとともに、n+層とn-層も明瞭に判別できることに成功した。この手法は、半導体 レーザなどの半導体製品に応用可能であり、特性及び信頼性の向上に寄与できる手法である。

1. はじめに

種々の半導体デバイスを開発するうえで、電気的評価はもち ろんのこと,設計上の構造が構築されているか否かを確認する ことは必要不可欠である。構造を観察する手段として,低倍率 ではSEM (scanning electron microscopy),高倍率ではTEM (transmission electron microscopy)が用いられており,研究 開発のみならず,製品管理においても重要な役割を果たしてい る。通常のTEM法(透過像,明視野像,暗視野像,高分解能 像などを指す)は,結晶の配列,転位の分布,結晶性などの情 報を実空間で観察することができ,半導体材料の開発をするう えで欠かせない評価手法の1つである。しかしながらこれら通 常のTEM法では,微小部の磁場及び電場の情報を得ることは できない。半導体デバイスや磁性体を用いたデバイス開発では, これらの微細な情報を必要とする場合があり,その手段の1つ として電子線ホログラフィがある。

電子線ホログラフィは、Gabor¹⁾によって発明されたホログ ラフィを電子線に応用したものである。外村らは²⁾,一光束の 電子線ホログラフィを実現し、Möllenstedt³⁾により発明された 電子線バイプリズムにより、二光束の電子線ホログラフィが実 現した。その後測定装置の改良とともに、磁性体中の磁場分布 や、超電導の磁束量子などの磁場観察の目覚しい研究成果が報 告された⁴⁾。

電子線ホログラフィ法による半導体の観察は、1985年に Frabboniらによって初めて成功した⁵⁾。彼らの実験では、Siの pn接合に電圧を印加し、その周囲に発生する電界を捉えてい る。この実験は電子線ホログラフィを半導体に応用した意味で 先駆的である。半導体内部の電位差を観察する事例は、 Frabboniらの研究から10年以上待つことになる。最初に半導 体内部のpn接合の観察に成功したのはMcCartneyらであり、

* 研究開発本部 横浜研究所

1994年に発表された⁶⁾。実際のデバイスへの応用は1999年に Rauらが最初に行った⁷⁾。彼らはSiのMOSFETの観察に成功 し、この研究の発表から多くの研究機関が電子線ホログラフィ による半導体観察を開始した。その後WangらがFIBを用いて 作製したTEM試料のSiのMOSFETの観察に成功し⁸⁾, Twitchettらは、pn接合に電圧を印加させて電位差が増幅され た研究事例を報告している⁹⁾。

これまでの半導体の観察事例は全てがSi半導体に関するも のであり、化合物半導体についてのpn接合の観察事例は皆無 であった。当社における半導体の製品群は化合物半導体である ため、GaAsやInPなどの化合物半導体の電子線ホログラフィ 観察手法の研究を開始した。本論文は化合物半導体についての 電子線ホログラフィ観察の概要と手法について述べ、実験結果 の定量的な議論を行った。

2. 他のキャリア分布観察手法

半導体のドーパント分布評価とキャリア分布評価は, SIMS (secondary ion mass spectrometry)による方法, SEMによる 方法¹⁰, SCM (scanning capacitance microscopy)による方法 などがある¹¹)。本節ではこれらの手法の特徴を述べ, 電子線 ホログラフィ法と比較する。

SIMSは試料表面に1次イオンを照射し,スパッタリング現 象で放出される2次イオンを質量分析することにより,試料表 面の組成を評価する表面分析法である。微量のドーパントの評 価が可能であり感度は非常に高い。感度はマトリックスとドー パントの組合わせに依存するが,1.0×10¹³~10¹⁶ cm⁻³までの 低濃度のドーパント評価が可能であり,材料及びデバイス開発 では必要不可欠な装置である。しかしながら深さ方向分析評価 であるため,多くは1次元の評価手法である。またSIMSはドー パントを捉える評価装置でありキャリアそのものを評価する装 置ではないため,活性化していないドーパントも全て捉えるこ とになる。 SEMは電子線を絞って電子ビームとして対象に照射し,対象 物から放出される二次電子と反射電子を捉える手法である。 SEMを用いる半導体観察の場合は,劈開面を用いてpnコントラ ストを観察することが可能である。簡便に観察できる評価手法 であるため,製造や開発現場では極めて有用である。SEMのコ ントラストとしては凹凸や組成の違いによる情報が利用される ことが多いが,半導体ではこれらに加えて,ドーパントの種類 や量によってコントラストが生成することが知られている¹⁰⁾。 SEMによる手法は半導体表面に吸着した酸素などの大きな影響 を受けるため,定量的な評価は難しいものの,簡単に作製でき る劈開試料を用いて観察できるため広く用いられている。

SCMは走査型プローブ顕微鏡の一種であり,プローブで試 料表面を走査し,半導体表面に発生する電気容量を捉える手法 である。この手法を用いればpnコントラストを捉えることが 可能である。SCMによる手法は試料表面数nmの情報ではなく, 表面から数10 nm程度の深さの情報であるため,極表面状態の 影響が少なくより定量的な評価が可能である。SCMの空間分 解能は金属プローブ先端の品質にも依存するが数10 nmであ る。

電子線ホログラフィ法は試料の内部電位を測定する方法であ る。上述した種々の手法と比較して利点と不利点があるが,最大 の特徴として空間分解能が高いという利点がある。したがって半 導体デバイスの微細化に伴い,Siデバイスの開発現場では必要不 可欠な手法となりつつある。また,電位分布を評価する方法であ るため,間接的にキャリア分布を評価する手法と言える。

3. 電子線ホログラフィによる半導体観察の原理

3.1 電子線ホログラフィ法

電子線ホログラフィ法はTEMの手法の1つである。電子線 ホログラフィ法による成果は、アハラノフ・ボーム効果の検証 が極めて有名である¹²⁾。本手法は基礎物理学の世界では歴史 的に多く用いられ非常に成果をあげてきたが、民間企業の研究 機関における実用材料の観察にはあまり用いられていない解析 手法である。

図1に位相の揃った電子源から放出された2つの軌道を通っ た電子線が,観察者の目元に届く様子を示す。この観察者が観 察する電子の物理現象を理解するには,次に示すシュレディン ガー方程式(1)を解かなければならない。

$$\left[\frac{1}{2m}\left\{-i\hbar\cdot\nabla+eA(r)\right\}^{2}-V(r)\right]\psi(r)=E\psi(r)$$
(1)

ここに, e, m, ψは電子の電荷, 静止質量及び波動関数で ある。ħはディラック定数, Eは電子のエネルギー, Aはベク トルポテンシャル, またVはスカラーポテンシャルである。電 子線ホログラフィ法においては, 位相積分の手法であるWKB 法を用いることにより解くことができ, 位相変化は次の(2)式 のように表せる。

$$\Delta \phi = \oint_{c} \left[k + \frac{V}{2E} k - \frac{eA}{\hbar} \right] \mathrm{d}s \tag{2}$$

図1 電子波の位相計測 Phase measurement of electron wave.

ここでkは波数ベクトルである。(2)式の右辺の第1項は光 路差による位相変化を表しており,電子線ホログラフィの実験 系においては,電子軌道1と電子軌道2の光路は同じであるの でこの項は無視できる。第2項は電位による位相の変化を表し ている。物体が電子軌道2にのみ置かれている系では,この物 体の内部電位が表現される項である。第3項はベクトルポテン シャルAによる項,すなわち磁束の様子が反映される項である。 以上より波動関数の位相の変化として,電子軌道に置かれた試 料の内部電位の変化及び電子軌道に囲まれた面を貫く磁束が観 察されることになる(図1)。この第3項に関する情報に基づい た手法は主に磁性体の観察に用いられている。一方本論文で述 べる半導体内部のキャリア分布の観察は,第2項の内部電位に 関する情報によるものである。

3.2 電位と位相差の関係

電子線ホログラフィを用いれば半導体中のpn接合などの電 位分布を観察できることが広く知られている。電位が異なれば, (2)式の電位の項のみを抜出した次の(3)式により電子の位相 差として表すことができるからである。

$$\Delta \phi = \frac{\pi}{\lambda E} V t \tag{3}$$

ここで λ は電子の波長でありEは電子のエネルギーである ので $\frac{\pi}{\lambda E}$ は定数である。またtは試料の厚さを表している。(3) 式からTEM試料膜厚が一定であれば位相分布を検出すること により電位の分布を観察できることが分かる。

pn接合部では、フェルミ準位を同じレベルに揃えるように 電位分布が形成される。同種の半導体であれば、n型半導体と p型半導体が持つ結晶としての平均内部電位は本来ほとんど同 じであるが、フェルミ準位のシフトによって内部電位も電位分 布と同じ分布を持つことになる。すなわち電子線ホログラフィ を使うと,この見かけ上変化した内部電位を計測することが可 能となる。

4. 電子線ホログラフィによる化合物半導体の観察 (劈開により試料作製した場合)

4.1 劈開試料の利点

(3) 式から明らかなように、右辺にt(試料厚さ)の情報を含む ため、TEM試料の厚さが不均一であると位相像に試料厚さの 情報が出てしまう。したがって均一厚さのTEM試料を作製す ることが必要である。しかも電子線ホログラフィ法においては、 要求される試料厚さの均一性のレベルは通常のTEM法よりも 高いため、機械研磨とArミリングのみを用いるTEM試料作製 法では、均一な膜厚のTEM試料を作製することは難しい。ま たFIBで作製したとしても、大きな問題点としてTEM試料の 表面にFIB加工によって形成されたダメージ層の影響がある。 このダメージ層は微結晶やアモルファスであり、厚いものでは 30 nmにも及び位相情報のノイズの原因にもなる。そのためこ こで述べる測定では劈開することによりTEM試料を作製した。 この試料ではTEM試料膜厚は変化するもののその変化量が一 定であるため、定量的な議論が可能になる。

4.2 劈開試料を用いた化合物半導体のpn接合の観察

4.2.1 観察条件

電子線ホログラフィ観察装置は,FE電子銃を搭載した日立 HF-2000を用いた。電子線の加速電圧は200 kVである。位相 像の再生はフーリエ変換法を用いた。

4.2.2 観察試料

GaAsのpn接合を観察した。n型のGaAsはシリコンがドー プされており、ドーパント濃度は1.0×10¹⁸ cm⁻³である。p型 のGaAsはカーボンがドープされており、ドーパント濃度は2.0 ×10¹⁸ cm⁻³である。試料作製は劈開により行った。劈開試料 作製の手順を図2に示す。図に示すように劈開を2回行うこと によって2つの劈開面が露出される。次に劈開した試料を45° 傾斜させてTEMホルダに載せた。

図2 劈開試料の作製方法 Preparation of cleaved specimens for electron holography.

4.2.3 観察結果

図3に観察したホログラムとホログラムから再生した位相像 を示す。像の下側は真空領域である。図3(b)の位相像では, 明瞭にpn接合の位置が確認される。この図において膜厚が厚 い部分の位相ジャンプは曲がり方が大きくなっていることが確 認される。

図3 GaAsの劈開試料の(a)ホログラムと(b)位相像 (a) Hologram and (b) phase image of p-n junction in GaAs cleaved specimen.

4.2.4 位相像の解析

図3(b)に示した位相像からp型半導体とn型半導体の電位差 を定量的に求めることを試みた。まずその手法について簡単に 説明する。内部電位と試料膜厚による位相変化は、上述したよ うに次の(4)式で表される。

$$\Delta \phi = \frac{\pi}{\lambda E} V t \equiv C_{\rm E} V t \tag{4}$$

ここで、定数項をC_Eとおいた。

本実験では試料は劈開しているので試料端は90°であり,試 料を水平位置から45°傾斜させたとすると次の関係がある。

$$t=2x$$

(5)

ここで, xは試料端からの距離, またtは試料の厚さである。 よって(4)式及び(5)式から次の関係が導かれる。

$$V = \frac{1}{C_{\rm E}} \frac{\mathrm{d}\phi}{\mathrm{d}t} = \frac{1}{2C_{\rm E}} \frac{\mathrm{d}\phi}{\mathrm{d}x} \equiv \frac{1}{2C_{\rm E}}a \tag{6}$$

ここで、 $d\phi/dx$ は a とおいた。以上より次の(7)式が求まる。

$$V_{\rm n} - V_{\rm p} = \frac{1}{2C_{\rm E}} \left(a_{\rm n} - a_{\rm p} \right) \tag{7}$$

数値解析をする場合は**図4**に示すように、位相像からp領域 とn領域の平均プロファイルを作成し、プロファイルの傾きか ら a_n と a_p を求める。傾き $a_n - a_p$ から $V_n - V_p$ を計算した ところ1.2 eVであった。

ー方計算によって求めたp-GaAs (2e18)とn-GaAs (1e18)の フェルミ準位の差は約1.35 eVであり、実験値は計算値に近い 値となった。誤差要因としては後述する表面空乏層の影響や試 料の傾斜角度誤差などが考えられる¹³⁾。

図4 (a) ホログラムと (b) p型領域と (c) n型領域の位相プ ロファイル (a) Hologram and (b) phase profiles of p-type region and (c) n-type region.

5. 電子線ホログラフィによる化合物半導体の観察 (FIBにより試料作製した場合)

5.1 FIBダメージ層除去の必要性

電子線ホログラフィを化合物半導体に応用するうえで重要と なるのがTEM試料作製である。FIBを用いればデバイスの特 定箇所を加工できる利点があるものの, FIBによるダメージ層 が試料表面に形成されるという問題がある。GaAs, GaN, InP などの化合物半導体は特に顕著で、FIB加工で試料を作製した 場合, 30~40 kVの加速電圧のGaイオンビームを使用すると 加工面に数10 nmのダメージ層が形成される。これらのダメー ジ層はSiの場合と異なり、アモルファス層の中に微結晶が存 在するという特徴がある14)。この微結晶は電子線ホログラフィ 観察をするうえで非常に大きな問題であり、これらの微結晶を 透過する電子は回折コントラストの影響を受けノイズの原因と なる。CooperらはGaAsのpn接合を電子線ホログラフィによ り観察しているが¹⁵⁾, FIBのみで作製したTEM 試料ではノイ ズが多く明瞭な位相像を再生することができていない。彼らは in-situ法でTEM 試料をアニールすることにより結晶を回復さ せ、明瞭な像を得ることに成功している。このin-situアニー ル法も1つの解決手段ではあるが、全ての材料に適用できると も限らず、また実デバイスの観察という観点からするとより迅 速な試料作製手法が望まれる。

そこで本研究では図5に示すように,FIB加工後にArミリングを用いてダメージ層を除去する手法を,電子線ホログラフィ観察用のTEM試料作製に応用した。この手法を用いれば ダメージ層を数nmにまで低減可能である¹⁴⁾。

5.2 電子線ホログラフィによる化合物半導体の観察

5.2.1 観察試料

観察に用いた試料の模式図を図6に示す。GaAs基板上に p-GaAsとn-GaAsの薄膜をMOCVD法で積層させたモデルサ ンプルである。n-GaAs中には濃度の高いn+領域と濃度の低い n-領域を作製した。この試料のn-GaAsのドーパントはシリコ

図5 FIBとArミリングを併用したTEM 試料作製方法 Preparation of TEM specimens using FIB and Ar milling.

図6 GaAsのモデルサンプルの模式図 Schematic diagram of GaAs p-n-p test sample.

ンであり, p-GaAsのドーパントはカーボンである。ドーパン ト濃度はSIMSより求めた。ドーパント濃度はそれぞれn-層 で は1.3×10¹⁶ cm⁻³, n+ 層 は3.0×10¹⁸ cm⁻³, p層 は1.0× 10¹⁹ cm³である。

5.2.2 TEM 試料作製条件

試料作製にはFIBを用いた。FIB加工装置は日立FB-2100で ある。Gaイオンビームの加速電圧40 kVで加工を行った。 TEM試料膜厚はSIM像で観察しながら300 nmとなるように 加工を行った。FIB加工後室温でArミリングを行った。Arミ リング装置はGATAN Dual ion millingで, Arビームの入射角 度は10°である。また試料は回転させずに5分間Arミリングを 行った。

5.2.3 位相シフト電子線ホログラフィ測定条件

観察にはFE電子銃を搭載したJEOL-3000Fを用いた。電子 線の加速電圧は300 kVである。ホログラムはピクセル数が 1024×1024のGATAN 794のCCDカメラで撮影した。用いた 観察条件ではCCDの1ピクセルは2 nmに対応する。バイプリ ズムの印加電圧は13 Vである。位相像の再生には位相シフト 法¹⁶⁾を用いホログラムは13枚撮影した。

5.2.4 観察結果

図7にTEM写真を示す。試料の左側はFIB加工のためのタ

ングステン保護膜である。このTEM写真から明らかなように、 ドーパントの異なる領域のコントラストは通常のTEM写真で は観察することができない。図8(a)にホログラムの1枚を示す。 図8(a)の点線で囲んだ領域の干渉縞についてバイプリズムに よって生じるフレネル縞を除去する処理をし、コントラストを 調整した干渉縞を図8(b)に示す。図8(a)ではフレネル縞の影 響が大きく干渉縞は明瞭ではないが、フレネル縞を除去するこ とにより干渉縞が明瞭になっており、ドーパントの異なる領域 の界面で縞が曲がっていることが確認できる。なおこの干渉縞 の間隔は約60 nmである。図8(b)のようなホログラムを13枚 用いて再生した位相像を図8(c)に示す。この位相像でp領域 とn領域が明瞭に区別できていることが確認できる¹⁷。

5.2.5 考察

図8(c)の位相像を解釈するために平均位相プロファイルを

図8 ホログラムと位相像

- Electron holograms and phase image.
- (a) GaAs 試料のホログラム
- Electron hologram obtained from GaAs specimen. (b) フレネル縞を除去したホログラム
- Corrected hologram without Fresnel fringes obtained from region enclosed by broken line shown in (a).
- (c) 再生位相像 Reconstructed phase image obtained from 13 holograms.

作成したので図9に示す。p領域とn-領域の位相差は約1.1 rad であり, n+とn-領域の位相差は約0.8 radである。図10に SIMS測定から求めたドーパント濃度値を用いて作成した電位 のプロファイルを示す。このプロファイル作成にはband calculatorを用いた。このプロファイルではn-領域とp領域の 電位差は約1.4 eVであり, n+とn-領域の電位差は約0.2 eVで ある。電位差と位相差の関係は, (4) 式を基に試料作製時のダ メージ層の影響を考慮した次の(8) 式で表すことができる。

$$\phi = \mathcal{C}_{\mathrm{E}} V \left(t - 2t_0 \right) \tag{8}$$

ここでt₀はダメージ層の厚さである。なお、(8)式はTEM 試料内で電子線の透過方向に対して、電位が一定である場合に 成立する式である。

(8) 式によると電位差と位相差は比例関係が成立つが,本実 験ではn-領域とp領域の位相差が1.1 radに対し電位差が1.4 eVであり,n+領域とn-領域の位相差が0.8 radに対し電位差 が0.2 eVであるから比例関係が成立しない。この比例関係が成 立しない原因は(8) 式が成立たないこと,厳密には電子の透過

図9 位相像から作成した平均プロファイル Averaged phase profile across p-n junction and n+/n⁻ interface from phase image.

図10 シミュレーションで求めたバンド図 Band diagram of sample obtained by solving Poisson's equations self-consistently. 方向に対して電位が変化していることが原因であると考えられる。この場合電位と位相の関係は次の(9)式で表す必要がある。

$$\phi = C_{\rm p} \int_0^{t-2t_0} V(z) \, \mathrm{d}z \tag{9}$$

ここでzは電子の透過方向に対する成分である。電位がz方 向に変化することを考慮に入れ、z方向について電位の変化と キャリアの変化についてシミュレーションを行った。シミュ レーションを行った方向を図11に示す。またシミュレーショ ンをするに当たっていくつかの仮定を用いた。TEM試料表面 のフェルミ準位は、伝導体の下端からp-GaAsで0.90 eV, n-GaAsでは0.65 eVとした^{18).19)}。またドーパントは全て活性 化していると仮定した。TEM試料膜厚はCBED測定から求め 280 nmである。バンド図とキャリアのシミュレーション結果 を**図12**に示す。

図12(a)(b)がn+領域, 図12(c)(d)がn-領域, 図12(e)(f)

図12 TEM 試料内部のバンド図とキャリア分布のシミュレーション結果

Simulations of the band diagram and carrier concentration in the TEM specimen. (a) (b) Aライン沿いのn+領域でのバンド図とキャリア分布

- Band diagram and carrier concentration for the n $^+$ region along line A. (c) (d) Bライン沿いのn -領域でのバンド図とキャリア分布
- Band diagram and carrier concentration for the n⁻ region along line B. (e) (f) Cライン沿いのp領域でのバンド図とキャリア分布
 - Band diagram and carrier concentration for the p region along line C.

がp領域を示している。ドーパント濃度の高いn+領域とp領 域では,TEM試料表面近傍でバンドが急激に曲がっているこ とが分かる。またキャリアのプロファイルから,表面近傍では キャリアが減少しており空乏化していることも確認できる。こ れらの領域の表面空乏化やバンドの曲がりは位相差に多少影響 があるものの,TEM試料全体から見れば小さい領域なので結 果には大きな影響はないと考えられる。一方n-領域ではバル クの状態とは大きく様子が異なっている。図12(d)ではキャリ アが消失しており,図12(c)のバンド図でもバンドが全体的に 曲がっている。フェルミ準位はバンドギャップのほぼ中央に位 置しており,本来のn半導体からは大きく性質が異なっている。 以上よりp領域やn+領域ではTEM試料表面近傍のみに空乏層 が存在していたが,n-領域ではTEM試料全体が空乏化してい る結果となった。

これらの結果と(9)式を用いて再度位相差を計算した。その 結果n-領域とp領域の位相差 $\Delta \phi_{n-p}$ は1.62 radであり, n+領 域とn-領域での位相差 $\Delta \phi_{n+n-}$ は1.11 radとなった。以上の解 釈により比例関係では実験値に近くなったものの大きさは異 なっている。これはGaイオンビームにより形成された電気的 不活性層 (electric inactive layer)の影響と考えられる。ここで TEM 試料表面に40 nmの電気的不活性層が存在すると仮定す ると, n-領域とp領域の位相差は $\Delta \phi_{n-p}$ は1.08 radであり, n+領域とn-領域での位相差 $\Delta \phi_{n+n-}$ は0.84 radとなり実験結 果とほぼ一致する。

以上の実験結果から推定される TEM 試料の断面図を図13に 示す。FIB加工後の TEM 試料表面にはアモルファスと微結晶 からなる FIB ダメージ層が存在したが,Ar ミリングで除去し た。したがってAr ミリングによる数nmのダメージ層が存在 していると考えられる。その下にはGa イオンビーム又はAr ミ リングで形成された電気的不活性層が存在していると予想され る。更にその下側には空乏層が存在しているが,空乏層の厚さ はドーパント濃度により変化する。今回観察した試料のn-領 域では試料全体が空乏化していると考えられる。

6. おわりに

電子線ホログラフィを用いてGaAsの電位分布が観察可能と なった。半導体の場合電位分布はキャリアの分布に対応するの で、キャリア分布を間接的に観察していることになる。また劈 開試料を用いれば明瞭にpn接合を観察できることを示した。1 次元の情報ではあるが、FIBダメージ層を考慮する必要がなく、 試料作製や解釈が容易である。一方FIBで試料作製した場合は, ArミリングによりFIBダメージ層を除去することが観察する うえで優位である。この場合TEM試料の両面に電気的不活性 層が存在していることを示唆する結果となった。GaAsの観察 ではpn接合のみならず,n型半導体中において1.3×10¹⁶ cm⁻³ と3.0×10¹⁸ cm⁻³の領域を明瞭に区別することが可能であった。 これらの手法は実デバイスの観察でも可能であるため,半導体 デバイスの特性及び信頼性の向上に有用な手法となっている。

謝辞

最後に,共同研究者である財団法人ファインセラミックスセンター・ナノ構造研究所の平山司,山本和生及びZ.Wang(現マイクロンテクノロジー)の各氏に感謝いたします。

参考文献

- D.Gabor: "A new microscopic principle," Nature, 161 (1948), 777.
- A.Tonomura, A.Fukuhara, H.Watanabe and T.Komoda: "Optical reconstruction of image from fraunhofer electron hologram," Jpn. J. Appl. Phys., 7 (1968), 295.
- G.Mollenstedt and H.Duker: "Fresnelscher interferenzversuch mit einem biprisma fur Elektronenwellen," Naturwissenschaften, 42 (1955), 41.
- T.Matsuda, S.Hasegawa, M.Igarashi, T.Kobayashi, M.Naito, H.Kajiyama, J.Endo, N.Osakabe and A.Tonomura: "Magnetic field observation of a single flux quantum by electronholographic interferometry," Phys. Rev. Lett., 62 (1989), 2519.
- S.Frabboni, G.Matteucci and G.Pozzi: "Electron holographic observations of the electrostatic field associated with thin reverse-biased p-n junctions," Phys. Rev. Lett., 55 (1985), 2196.
- M.R.McCartney, D.J.Smith, R.Hull, J.C.Bean, E.Voelkl and B.Frost: "Direct observation of potential distribution across Si/ Si p-n junctions using off-axis electron holography," Appl. Phys. Lett., 65 (1994), 2603.
- W.D.Rau, P.Schwander, F.H.Baumann, W.Hoppner and A.Ourmazd: "Two-Dimensional Mapping of the Electrostatic Potential in Transistors by Electron Holography," Phys. Rev. Lett., 82 (1999), 2614.
- Z.Wang, T.Hirayama, K.Sasaki, H.Saka and N.Kato: "Electron holographic characterization of electrostatic potential distributions in a transistor sample fabricated by focused ion beam," Appl. Phys. Lett., 80 (2002), 246.
- A.C.Twitchett, R.E.Dunin-Borkowski and P.A.Midgley: "Quantitative Electron Holography of Biased Semiconductor Devices," Phys. Rev. Lett., 88 (2002), 238302.
- F.Iwase, Y.Nakamura and S.Furuya: "Secondary electron emission from Si-implanted GaAs," Appl. Phys. Lett., 64 (1994), 1404.
- A.Erickson, L.Sadwick, G.Neubauer, J.Kopanski, D.Adderton and M.Rogers: "Quantitative scanning capacitance microscopy analysis of two-dimensional dopant concentrations at nanoscale dimensions," J. Electronic Materials, 25 (1996), 301.
- 12) A.Tonomura, N.Osakabe, T.Matsuda, T.Kawasaki, J.Endo, S.Yano and H.Yamada: "Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave," Phys. Rev. Lett., 56 (1986), 792.

- J.Li, M.R.McCartney, R.E.Dunin-Borkowski and D.Smith: "Determination of mean inner potential of germanium using off-axis electron holography," Acta Cryst., A55 (1999), 652.
- 14) 藪崎こずえ,佐々木宏和: "FIBを用いた微細構造解析用試料 調製技術"古河電工時報,110 (2002),77.
- 15) D.Cooper, A.C.Twitchett, P.K.Somodi, P.A.Midgley, R.E.Dunin-Borkowski, I.Farrer and D.A.Ritchie: "Improvement in electron holographic phase images of focused-ion-beam-milled GaAs and Si p-n junctions by in situ annealing," Appl. Phys. Lett., 88 (2006), 063510.
- 16) K. Yamamoto, I. Kawajiri, T. Tanji, M. Hibino and T. Hirayama: "High precision phase-shifting electron holography," J. Electron Microsc., 49 (2000), 31.
- 17) H.Sasaki, K.Yamamoto, T.Hirayama, S.Ootomo, T.Matsuda, F.Iwase, R.Nakasaki and T.Ishii: "Mapping of dopant concentration in a GaAs semiconductor by off axis phaseshifting electron holography," Appl. Phys. Lett., 89 (2006), 244101.
- 18) W.E.Spicer, P.W.Chye, P.R.Skeath, C.Y.Su and I.Lindau: "New and unified model for schottky barrier and III-V insulator interface states formation," J. Vac. Sci. Technol., 16 (1979), 1422.
- W.Monch: "Chemisorption-induced defects at interfaces on compound semiconductors," Surf. Sci., 132 (1983), 92.