フルバンドチューナブルレーザ搭載 ITLAの開発

Development of an ITLA Using a Full-Band Tunable Laser

堀川浩二* Koji Horikawa 山本篤司* Atsushi Yamamoto 長田貴志* Takashi Osada

越浩之* Hiroyuki Koshi 屋冨祖良貴 * Yoshitaka Yafuso

黒部立郎* Tatsuro Kurobe

概要 波長可変レーザアセンブリ(ITLA: integrable tunable laser assembly)の規格に準拠したレー ザ制御モジュールを開発した。本モジュールは、Cバンド帯、またはLバンド帯の波長帯域をカバー するDFBアレイ型のレーザを搭載しており、レーザ内部にある波長ロッカにより、精度の高い波長 制御が可能である。また、半導体光増幅器(SOA)、分布帰還型(DFB)レーザ及び2台の独立したペ ルチェ素子(TEC)を、それぞれ制御することによって、光出力強度と波長を調整することができる。 更に、ディザリング機能(SBS抑制用FM変調、信号識別用AM変調)を実現している。本稿では、本 ITLAの構成について説明し、波長安定性などの主要特性について紹介する。

1. はじめに

近年のインターネットトラフィックの急増に伴い、高密度波 長多重 (DWDM) 通信システムの大容量化が進んでおり、トラ フィック状況にあわせて再構成可能なネットワークの実現と、 コスト低減が求められている。そのため、従来の固定波長の分 布帰還型 (DFB: distributed-feedback) レーザから, 発振波長を 容易に変更できる広帯域の波長可変レーザへの置き換えが急速 に進んでいる。図1にDWDM通信システムの概念図を示す。 波長の異なる複数の光信号を同時に伝送するDWDM通信シス テムでは、波長及び光出力の安定度の高い光源が求められる。 従来は固定波長光源が用いられていたため、システム保守のた めには非常に多くの光源をスペアとして準備する必要があり, そのためのコストが問題となっていた。しかし、任意の波長に チューニングが可能な波長可変レーザ光源を用いることによ り、システム運用及び保守の低コスト化が実現できる。また、 波長可変レーザ光源は、トラフィック状況にあわせた波長割り 当ての再構成を行うことも可能である。

このようなシステムの要望を実現するために,**表1**に示され る様々な方式を用いた波長可変レーザが提案されている^{1)~5)}。 しかし,いずれも波長の可変方法は複雑であり,外部環境変化 時の動作特性や経時変化などが課題とされてきた。一方,我々 はこれまでに熱波長可変のDFBレーザの長期的な安定性に注 目し,異なる発振波長を有するアレイ型DFBレーザ,S字導 波路,光カプラを同一基板上に集積化するレーザモジュールの 開発を行ってきた^{6)~9)}。

上記に示したような,様々な形態及び方式での波長可変レー

* 研究開発本部 ファイテルフォトニクス研究所

ザの互換性を高めるため、OIF (optical internetworking forum) において波長可変レーザアセンブリ (ITLA: integrable tunable laser assembly)の標準規格であるOIF – ITLA – MSAが規定された¹⁰⁾。**表2**にITLA – MSAの主な仕様を示す。

今回我々は、Cバンド帯、またはLバンド帯の各領域にわたっ て波長制御可能なフルバンドチューナブルレーザを搭載し、マ ルチソースアグリーメント(MSA)に準拠した制御回路基板つ き波長可変レーザモジュール(ITLA)を開発した。半導体光増 幅器(SOA:semiconductor optical amplifier), DFBレーザ, 及び2台のペルチェ素子(TEC:thermo electric cooler)を、そ れぞれ制御することにより、光出力強度と波長を高精度に制御 することができた。更にオプションとして、AM変調とFM変 調の2種類のディザリング機能を実現した。本稿では、今回開 発したITLAの構成について説明し、光学特性及び消費電力な どの主要特性について紹介する。

図1 DWDM 通信システムの概念図 Outline of DWDM communication system.

表1	波長可変方式の例
	Typical wavelength tuning technologies.
文献番号	方式の概要
1)	SG-DBR-LD
2)	SSG-DBR-LD
3)	MEMS小型外部共振器型LD
4)	温度制御エタロンフィルタを用いた外部共振 器型LD
5)	MEMS共振器長制御 面発光LD

表2 ITLA-MSA 仕様 (Long Haul/50 GHz channel spacing) ITLA-MSA specifications (Long Haul/50-GHz channel spacing).

項目	仕様
周波数誤差	ITU_Grid ± 2.5 GHz
光出力範囲	$10 \sim 13 \text{ dBm}$
消費電力	6.6 W以下
Dither	Option (AM/FM)
線幅	10 MHz以下
RIN	- 135 dB/Hz (10MHz \sim 10 GHz)
SMSR	40 dB以上
サイズ	$74.0 \times 30.5 \times 10.5 \text{ mm}^3$
通信IF	RS232C
電源電圧	- 5.2 V/+3.3 V

2. ITLAの構成

今回開発したITLAの写真を図2に示す。消費電力やノイズ を考慮した制御回路を74 mm×30.5 mmサイズ(高さ:10.5 mm)の大きさの基板内に実装し、フルバンドチューナブルレー ザモジュールの制御を行っている。以下にITLAの構成につい て説明する。

2.1 フルバンドチューナブルレーザ

図3に、フルバンドチューナブルレーザの構成図を示す。内 蔵されているレーザチップは,異なる発振波長の分布帰還型 (DFB) レーザアレイと、DFB レーザからの出力を結合する光 カプラ,光カプラ内での損失を補償する半導体光増幅器(SOA) を集積した構造となっている。DFBレーザアレイのアレイ数 は12素子であり各DFBの発振波長間隔はおよそ3.5 nm間隔で ある。所望の国際電気連合(ITU)の定めるITUグリッド付近 のDFBレーザを選択し10℃~50℃の温度による波長調整を行 うことにより、フルバンドの全ての波長グリッドをカバーする ことができる。更にレーザモジュール内には、前記レーザチッ プに加え、レーザダイオード(LD)の経時変化による波長ドリ フトを抑えるための波長ロッカーが搭載されている。波長ロッ カーは、2つのフォトダイオード(PD)とエタロンフィルタか ら構成され、一方のPDにより光出力をモニタし、他方のPD でエタロンを透過した光をモニタして波長の制御を行う。図4 に示すカーブは発振波長と波長をモニタした電流値の関係を示 し波長弁別特性と呼ばれるものである。この波長弁別特性のス ロープを用いて、波長のズレをPD 電流値の変化として検出し ている。また、本モジュールには2台のペルチェ素子(TEC)

が搭載されレーザチップ温度及びエタロン温度を独立制御でき る。従来の1台のTECでレーザの温度制御をする場合,エタ ロン温度が変化して波長ドリフトが起こりやすく,モジュール の制御やモジュール作製上も難しかった。そこで,2台のTEC で独立制御可能なモジュール構造とすることで,波長制御性を 高め作製上のトレランスを広げることができた。

図2 ITLAの写真 Photograph of ITLA.

図3 フルバンドチューナブルレーザの構成図 Configuration of full-band tunable laser.

図4 25 GHz 波長スペース対応波長弁別特性 Wavelength discrimination characteristics with 25-GHz spacing.

2.2 制御回路ブロック

図5にITLAの制御ブロック図を示す。2つの独立したTEC 温度制御回路は、第1の温調回路によりエタロンの温度制御を 行うことで、波長ドリフトの影響を抑えている。また、第2の 温調回路では、各設定波長にあわせたDFBレーザの温度制御 を行っている。以上の2つの温調回路により、波長を安定性が 高く、かつ高精度に制御させることができる。DFB電流制御 回路とDFB波長チャネル切替回路では、 基板上のメモリに格 納されている設定値を元にして任意の波長チャネルのレーザを 駆動させている。SOA電流制御回路は、光出力強度のモニタ 値に基づき、SOA電流の制御を行っているため、波長制御に 関係なく、光出力強度を変更することが可能である。また、本 ITLAは、MSAに準拠した機能が実装されており、各コマン ドの処理と各アラーム(波長,温度,光強度など)の上位装置 への通知を行っている。更に、内蔵のCPUは、波長や光出力 に影響を及ぼすことなく、ファームウエアをバージョンアップ することが可能である。

誘導ブリルアン散乱 (SBS: Stimulated Brillouin scattering) 抑制用FM変調は、モジュール内部にて任意の信号を生成し、 DFB電流に重畳している。また、信号識別用AM変調は、上 位装置より送信される識別 (TxTrace) 信号が、接続コネクタ を介して入力されるため、ITLA内部では、TxTrace制御回路 により、適切な信号に変換して、SOA電流に重畳している。 本ITLAの特徴としては、構成上DFB電流とSOA電流がそれ ぞれ独立して制御できるため、ディザリング機能についてもお 互いの影響を受けることがなく、同時に制御することが可能で ある。

図5 ITLAの制御ブロック図 Block diagram of ITLA.

3. 特性評価

今回開発したITLAの主な特性評価について報告する。評価 には、主にCバンド帯で、50 GHz間隔に対応した波長ロッカ を持つレーザモジュールを使用した。先ず波長可変領域及び波 長安定性について示し、次に消費電力やノイズ特性(線幅特性 や相対雑音強度(RIN))などの性能特性について報告する。最 後に、ディザリング機能の評価結果についてまとめる。

3.1 波長可変領域及び波長安定性

ITLAには、従来の固定波長DFBレーザと同等の特性が求 められており、MSAでも光学特性に関する様々な規格が定め られている¹⁰⁾。本ITLAは、50 GHz間隔の高密度波長多重 (DWDM)に対応させるため、レーザとエタロンの温度を調整 することにより、極めて精密な波長制御を実現している。図6 に2種のレーザを用い、任意の波長チャネルで波長をロックさ せたときの光スペクトルの軌跡を示す。この図から本ITLAは Cバンド帯(1530 nm~1565 nm)及び、Lバンド帯(1565 nm ~1610 nm)に対応していることが分かる。また、隣接モード 抑圧比(SMSR:side-mode suppression ratio)についても、40 dB以上と良好な結果を得ている。更に、本ITLAでは、図4に 示す波長弁別特性を持つレーザに変更することで、25 GHz間 隔でのDWDMにも対応することも可能である。

図6 Cバンド帯, Lバンド帯の発振スペクトル Lasing spectra at C band and L band.

図7は、7 dBm ~ 13 dBmの光出力強度の変動に対する波長 チャネルごとの目標周波数誤差を示している。いずれの波長 チャネルに設定しても、各光強度において、±0.5 GHz以下の 周波数誤差であり、波長が高いレベルで安定していることが確 認できた。また、ITLA - MSAの規格である±2.5 GHz以内に 十分収まっていることも分かった。

-120 ch=1ch, Isoa=103mA, Idfb=150mA -130 -140 Ŕ ģ -150 ЯN -160 T=−5°C -170 T=25°C T=75℃ -180 20 0 5 10 15 25 Frequency (GHz) 図9

3.2 性能特性

長距離伝送を実現させるためには、スペクトル線幅やRIN (relative intensity noise)など、ノイズに対する特性について も、ITLA – MSAの規格を満足する必要がある¹⁰⁾。図8に外 気温度変動に対する各波長での線幅測定値を、図9では、外気 温度変動に対する各波長のRIN測定値を、それぞれ示してい る。いずれの結果においても、外気温度の違いによるノイズ変 化がほとんど見られず、長距離伝送に適した、低ノイズの性能 であることが確認できた。

また、ITLA – MSAでは伝送特性だけではなく、300-pin MSAトランスポンダに搭載されることを目的として、そのサ イズや消費電力についても規格化されている¹⁰⁾。フルバンド チューナブルレーザモジュールは、2つのTECを用いることで、 最大4.2W以下の低消費電力を実現している。図10に、消費電 力が高いとされている外気温度75℃及び – 5℃での各波長にお ける消費電力を示す。各波長チャネルにおいて、消費電力が4.2 W以下であることが確認できた。

図8 線幅特性 Linewidth characteristics.

3.3 ディザリング機能特性

SBSによる反射光は、伝送可能な強度の大きさを制限させる など、伝送特性に多大な影響を及ぼす。このため、反射による 損失を抑制させることは通信システムにおいての重要な課題と なっている。FM変調 (FM – Dither) はSBSを抑制させるため の対策の一つであり、本ITLAでは規定された周波数及び振幅 パターンでDFBレーザの制御電流を変調させることにより、 光波長の制御を実現している。図11に、光出力強度に応じた 反射損失の測定結果を示す。この測定は、シングルモード光ファ イバ30 km通過後の光出力強度を測定用パワーメータにて測 定している。FM – Ditherがオフの状態では、光出力強度を大 きくするにつれて、反射損失が大きくなっていることが分かる。 一方、オンにした場合では、光出力強度の大小に関わらず、 SBSによる反射損失がほとんど変化しないことが確認できる。 以上より、FM – Ditherが有効に機能していることが分かる。

信号識別用AM変調は、上位装置から送られてくる任意の TxTrace信号を用い、光出力強度を制御することにより、受 信側に送信器を識別させるための機能である。本ITLAでは、 上位装置からのTxTrace信号を、TxTrace制御回路により適 切な信号に変換して、SOA電流に重畳することにより、光出 力強度の制御を実現している。

図11 反射損失 (SMF: 30 km) Reflection loss characteristics with a 30-km SMF.

4. おわりに

MSAに準拠したフルバンドチューナブルレーザ搭載の ITLAを開発した。本ITLAは、Cバンド帯、またはLバンド 帯の全域をカバーしており、50 GHz間隔のDWDMに対応し た波長ロッキングを実現している。また、搭載するレーザを変 更することで、25 GHz間隔にも対応することが可能である。 また、オプションであるディザリング機能を実現するなど、多 機能な性能を持っているため、DWDM通信システムの高機能 化及び小型・低コスト化に大きく貢献できるデバイスである。

参考文献

- V. Jayaraman, Z-M. Chuang, and L. A. Coldren: "Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings," IEEE J. Quantum. Electron., 29 (1993), 1824.
- Y. Tohmori, Y. Yoshikumi, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, and M. Yamamoto: "Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers," IEEE J. Quantum. Electron., 29 (1993), 1817.
- J. D. Berger, Y. Zhang, J. D. Grade, H. Lee, S. Hrinya, and H. Jerman: "Widely tunable external cavity laser based on a MEMS electrostatic rotary actuator" in Optical Fiber Communications Conf. Proc., OFC 2001, (2001), TuJ2-1 - TuJ2-3.
- "Intel C-band Tunable Laser Performance design white paper," (2003).
- D. Vakhshoori, P. Tayebati, C. Lu, M. Azimi, P. D. Wang, J.-H. Zhou, and E. Canoglu: "2mW CW single mode operation of a tunable 1550 nm vertical cavity surface emitting laser with 50 nm tuning range," Electron. Lett., 35 (1999), 900.
- 6) T. Kimoto, T. Kurobe, K. Muranushi, T. Mukaihara and A. Kasukawa: "Reduction of spectral-linewidth in high power SOA integrated wavelength selectable laser," in International Semiconductor Laser Conference Conf. Proc., ISLC2004, SaA6, (2004), 149.
- T. Mukaihara, T. Kurobe, N. Yamanaka, N. Iwai, and A. Kasukawa: Indium Phosphide and Related Materials Conf. Proc., IPRM 2000, (2000) MA1-5, 506.
- T. Kurobe, T. Mukaihara, N. Yamanaka, N. Iwai, and A. Kasukawa: Indium Phosphide and Related Materials Conf. Proc., IPRM 2000, (2000) WA3-5, 29.
- 9) T.Kurobe: "Development of Full-Band Tunable Laser",古河電工時報 121, (2008), 1.
- OIF-ITLA-MSA-01.2-Integrable Tunable Laser Assembly MSA (2007) October 29.