発泡体の気泡制御とその光学特性

Structure Control and Optical Properties of Plastic Foams

小久保陽介*田中彰* 友松 功* 青垣智幸* 伊藤正康* Yousuke Kokubo Akira Tanaka Isao Tomomatsu Tomoyuki Aogaki Masayasu Ito

概要 マイクロセルラープラスチック (MCP) プロセスは、ミクロンオーダの気泡を有する発泡体を作るた めの1つの手段であり、他の発泡法に比べて気泡が微細で、かつ気泡数密度の極めて高い発泡体を容易 に作製できるという特長を持つ。本報告書では、MCP プロセスにおける微細気泡制御について紹介し、 発泡倍率を保ちつつ気泡のナノ化が実現できることを見る。そして、気泡制御を行うことで発泡体に どのような光学特性が現れるのかについて4つの具体例を挙げ、気泡制御技術の有用性とそれらの用 途展開について議論する。

1. はじめに

発泡体の研究対象の1つに気泡の微細化技術がある。発泡体 の性質は、その内部に含まれる気泡の状態(セルモルフォロ ジー)によって多様であり、例えば、気泡径が数百µmの発泡 スチロールに代表される発泡体は、緩衝材や断熱材として幅広 く利用されている。またディスプレイや照明機器には光源の光 を有効に使用するための光反射板が備えられているが、このよ うな用途にも発泡体が利用されている。当社の製品であるポリ エチレンテレフタレート (PET) 発泡体 (商品名 MCPET®) もそ の1つであり、その平均気泡径は数µm程度と極めて微細であ る¹⁾。一般に、平均気泡径が10 µm以下の発泡体をマイクロ発 泡体 (micro cellular plastics, 略して MCP) と呼ぶ。マイクロ 発泡体が有する高い光反射特性はその気泡径の微細な構造によ るものであり、気泡の微細化技術によって従来には無い新しい 特性が発泡体に付与された一例となっている。こうした背景を 考えると、気泡径をより微細化したナノ発泡体に対して、更な る新機能を期待することはごく自然な流れである。当初理論的 に予想されたナノ発泡体の性質は機械強度の向上や超断熱性, 発泡体の透明化など、実に興味深いものばかりである。これら の事実を検証するため、現在も数多くの研究が続けられており、 例えば、ブロック共重合体を利用する方法2)、3)や樹脂中に気 泡核剤をナノ分散させる方法4)、樹脂結晶化を利用して気泡成 長を抑制する方法5)などが試みられている。また最近では紫外 線を用いた新しい発泡法による気泡の制御技術も提案されてお り、ナノ発泡体の光学特性についても議論されている⁶⁾。

これに対し我々は, MCPプロセス(バッチ法)と呼ばれる方 法を用いた気泡制御の研究を進めている。MCPプロセスは, ミクロンオーダの気泡制御に関して優れた発泡法である が7).8),近年では、一部の樹脂において数十nmオーダの制御 が可能であることが報告されている⁹⁾。特に注目したいのは、 ナノ発泡体の気泡密度がマイクロ発泡体に比べて劇的に増加す る事実が示された点である。すなわちこれは、気泡の微細化に 伴う発泡倍率の低下を気泡数で補える可能性を示唆しており、 発泡体の要である発泡倍率を低下させることなく微細化制御を 行うという視点からも大変興味深い。本報告ではまず、MCP プロセスの特長とその気泡制御法について紹介し、ナノ発泡体 を含めた制御が可能であることを確認する。そして後半部分で は発泡体の光学特性に注目し、気泡制御によってどのような特 性が現れるかを具体的な4つの事例を挙げて見ていくことにす る。

2. MCPプロセスとその特長

2.1 MCPプロセス

まず初めにMCPプロセスの概要について説明する⁷。MCP プロセスは、図1に示すような2つの工程から構成される。第 1工程は、発泡剤となる不活性ガス(本報告書では炭酸ガスを 使用)を、高圧下で樹脂シートに浸透させる工程である。重量 Mの樹脂に対して△Mのガスが浸透した場合、浸透量を

$$w = \frac{\Delta M}{M} \times 100 \tag{1}$$

によって定義する。浸透量は浸透開始直後から時間と共に増加 するが,ある一定時間経過するとそれ以上ガスが入らない飽和 状態に達する。これに要した時間を飽和浸透時間,このときの 浸透量を飽和浸透量と呼ぶ。マクロに見れば飽和状態はガスが

^{*} 研究開発本部 環境エネルギー研究所

樹脂中に一様分散した平衡状態であり,均一に樹脂を発泡させ る目的においては,この状態を目指して浸透を行なうのが一般 的である。飽和浸透量や飽和浸透時間は,樹脂の種類やシート 厚みによって異なるが,特に結晶状態にある樹脂に関しては, 結晶化による樹脂の自由体積の減少やガスの拡散を阻害する効 果のために,ガスが入りにくい傾向にある。この状況を改善す るため,浸透温度を高温にしてガス浸透を促進する方法も提案 されている⁸⁾。

続く第2工程は、ガスが浸透した樹脂を高圧容器から取り出 し、常圧下で加熱を行う工程である。樹脂シート内部のガスは、 この急激な加熱によって熱力学的に不安定な状態となる。実際 に気泡が生成されるのは、系の温度が樹脂のガラス転移点(*T*g) 近傍に達した時であると考えられている。ただし樹脂は、浸透 したガスによって可塑化されているため*T*gが降下した状態に ある¹⁰⁾。降下の割合は浸透量とともに大きくなることから、 仕上がりの良い発泡体を得るには、そのときの浸透量に見合っ た適切な加熱温度*T*fを選択する必要がある。

発泡体を特徴付ける基本的な量には、元の樹脂の密度ρ₀と 発泡後の密度ρ_fの比として与えられる発泡倍率

$$\alpha = \frac{\rho_0}{\rho_f} \times 100 \tag{2}$$

や気泡径R,次式で定義される気泡核数nがある。

 $n = \alpha N^{3/2} \tag{3}$

ただしNは,発泡体の断面観察から求まる単位面積当たりの 気泡数であり,(3)式においては,これを3/2乗することで単 位体積当たりの気泡数に換算している。一般に,マイクロ発泡 体に含まれる1 cm³当たりの気泡核数は10⁹個のオーダであり, この数値からも MCP プロセスで作られる発泡体の気泡数の多 さを読み取ることができる。

2.2 MCPプロセスの特長と気泡径の制御

ここでは、ポリカーボネート(PC)樹脂を例にとり、ナノ発 泡体を含めた気泡制御がMCPプロセスにより可能であること を示す。

厚み1 mmのPCシート(EC105 住友ベークライト社製)に 浸透量6.6 wt%から18.4 wt%の範囲でガスを浸透させ、それぞ れのサンプルを加熱することで発泡体を作製した。なお加熱温 度に関しては、発泡倍率が2倍から3倍になるよう設定を行っ た。図2は走査型電子顕微鏡(SEM)による各発泡体の断面写 真であり,図3には浸透量と気泡径の関係を示す。浸透量が最 も少ない6.6 wt%の場合,発泡体の平均気泡径は16 µm(発泡 倍率2.3倍)となる。注目したいのは,ここから浸透量が多く なるにつれて気泡が微細化する点である。浸透量12.5 wt%の 場合の平均気泡径が6.9 µm(発泡倍率2.7倍),浸透量15.5 wt% の場合には気泡径3.4 µm(発泡倍率2.7倍)とMCPET並みの気 泡径となる。興味深いのは更に浸透量が増えた場合であり, 18.4 wt%においては図2gの写真のような平均気泡径150 nm (発泡倍率2.2倍)のナノ発泡体となる。我々の研究によれば, 更に高いガス浸透量を実現することもでき,このとき気泡は更 に微細化することが分かっている。このように,MCPプロセ スにおける発泡体の気泡制御は,樹脂へのガス浸透量の制御に より達成することができる。

図3 浸透量と気泡径の関係 (PC) A relationship between average cell sizes of PC foams and CO₂ concentration.

ここで, MCPプロセスにおける重要な特徴について触れて おこう。図4は, PC発泡体の気泡径Rと気泡核数nの関係を示 したグラフであり, 2つの数値の間には次式が成り立つ。

$$n = 10^{\rm b} R^{-a} \tag{4}$$

ただし、aとbの値は樹脂の種類による定数であり、今回の PCに対してはa=3.6、b=12.8のように選ぶことで実測値を再現 する。(4)式は、気泡径が小さくなるにつれて気泡核数が増加 するという、MCPプロセスの特長を表している。実際、PCの ナノ発泡体に関しては、1 cm³当たりの気泡核数が10¹⁵個の オーダであり、マイクロ発泡体の10⁹個と比べてその多さは歴 然である。MCPプロセスでは、マイクロ発泡体と同程度の発 泡倍率を有するナノ発泡体を作ることができるが、これはナノ 発泡体の気泡核数の多さによるものと考えられる。

3. 発泡体とその光特性

前節では、MCPプロセスにおける発泡体の気泡径が浸透量 によって制御できる事実について述べた。ここでは、発泡体の 気泡制御を行なうことで実際にどのような光学特性が現れるの かを、具体的な4つの事例を挙げて紹介する。

3.1 マイクロ発泡体の可視光反射特性とMCPET

先に述べたように、マイクロ発泡体の性質の1つとして高い 可視光反射特性がある。当社はその優れた特長にいち早く注目 し、MCPプロセスを工業的な生産法に発展させてマイクロ発 泡体の量産化を実現した¹⁾。現在、こうして生産したマイクロ 発泡体はMCPETとして様々な照明用途に利用されている。こ の節では、当社製品の代表とも言えるMCPETについてその応 用例も併せて紹介する。

MCPETはPET樹脂シートのマイクロ発泡体であり、その 気泡径は10 µm以下、気泡核数は1 cm³当たり10⁹個以上にな る。図5はSEMによるMCPETの断面写真である。また、図6 は分光光度計(UV-3101 島津製作所社製)を用いて測定した MCPETの全反射率であり、波長400 nmから700 nmの範囲の 可視光に対して平均反射率は99%(硫酸バリウム白色板との相 対値)と極めて高い数値を示す。電飾看板や照明機器の反射板 として従来用いられてきた白色鋼板に比べ,MCPETは可視光 領域の反射率に波長依存性を持たないため,原色を再現した反 射光が得られるのも特長である。以上で見られる光学特性は, マイクロ発泡体特有の微細な気泡構造と気泡核数の多さによっ てもたらされる,多重Mie散乱の効果によるものである。

図5 MCPETのSEM写真 SEM image of MCPET.

さて具体的な応用例として、シャーカステン(レントゲン写 真を観察するための医療用モニタ)にMCPETを適用した例を 紹介しよう。シャーカステン内部には光を効率良く使用するた めの反射板が備えられている。その反射板として図6で示した 白色鋼板を用いた場合、シャーカステンの表面照度の平均値は およそ6600 luxとなる(図7a)。これに対し、白色鋼板を MCPETで置き換えるとその照度は10690 luxと大幅に向上す る(図7b)。この事からも、MCPETが反射板として優れた性 能を有することを確認できる。

図7 反射板の違いによるシャーカステンの照度分布 Illuminance on the surface of a schaukasten with a steal reflector (a) and MCPET (b).

近年,MCPETは看板や液晶ディスプレイのバックライト用 の反射板のみならず,その成形性の高さから様々な照明分野に 展開され始めている。エネルギー効率を見直す動きが高まりつ つある現在,照度や輝度を下げることなく電力を減らすことが できるMCPETのような技術は重要である。更なる反射率の向 上が望めるサブミクロンオーダでの気泡制御技術を工業的な生 産法として確立し,照明分野の高照度化や省エネルギー化に貢 献したいと考えている。

3.2 気泡のナノ化制御と熱線の透過

この節では、発泡体の気泡径をナノオーダまで微細化した場 合の光学特性を議論しよう。この目的のため、光を電磁波とい うより大きな枠組みで捉えることにする。電磁波は時間的に変 動する電場と磁場が、互いに誘導することによって空間を伝播 する波の1種である。電磁波の性質は波長によって分類できる が、このとき、波長380 nm (青色光)から780 nm (赤色光)の 領域の電磁波は可視光に相当する。また、波長800 nmから 10 µm程度の電磁波は赤外線(熱線)と呼ばれ、物質に吸収さ れて熱に変換されやすいという性質を持つ。

さて、厚み250 µmのポリエーテルサルフォン(PES)樹脂シー ト(スミライト®FS-1300 住友ベークライト社製)のマイクロ 発泡体(平均気泡径1 µm)とナノ発泡体(平均気泡径100 nm) の特性を比較しよう。図8は、分光光度計(U-4100 日立ハイ テク社製)を用いて測定した400 nmから2000 nmまでの可視 光及び近赤外線に対する反射率(酸化アルミニウム白色板に対 する相対値)を表す。マイクロ発泡体に関しては、測定波長領 域で(PES固有の吸収を除いて)ほぽ一定値をとっているのに 対して、ナノ発泡体に関しては可視光に比べて近赤外線の反射 率が低下している。これは近赤外線の波長に比べて発泡体の気 泡が十分小さくなった為であり、このような状況の光散乱は Rayleigh 散乱として特徴付けられる。Rayleigh 散乱の散乱係数 は波長の4乗に反比例するため、反射率に波長依存性が現れる のである。

図8 PES発泡体の電磁波反射特性 Total reflectance of a microcellular polyethersulfone (PES) foam (the red broken line) and a nanocellular PES foam (the blue line), relative to an aluminum oxide plate.

ナノ発泡体の赤外線反射率の低下は、すなわち、ナノ発泡体 が熱線を通すことを意味している。そこで、図9aのような装 置を用いて熱線が透過する様子を調査した。この装置は、熱源 と熱電対の間に発泡体を置き、熱源を点灯させた後の温度上昇 を測定するというものである。結果、マイクロ発泡体を間に置 いた場合には2.7℃のみの温度上昇だったのに対し、ナノ発泡 体の場合には12.9℃の大幅な温度上昇が見られた(図9b)。こ のことから、ナノ発泡体は確かに熱線を透過していることが分 かる。

図9 PES発泡体の熱線透過による温度上昇測定 Heat rays transmission and temperature increase.

以上のようなナノ発泡体の性質は、光反射シートの観点から 見ても興味深い。通常のマイクロ発泡体は、光と共に赤外線も 反射するため、光の反射方向の温度が上昇することは避けられ ない。ディスプレイなどの密閉空間においては、こうした温度 上昇は機器の歪みや劣化を生じさせる原因となり得るため、輝 度に寄与する光のみを反射させることが好ましい。これに対し、 気泡径を100 nm前後に制御したナノ発泡体を用いることで、 マイクロ発泡体よりも高い可視光反射率を実現し、かつ熱に寄 与する赤外線を透過させて放熱することが可能となる。ただし、 気泡の微細化によって可視光領域さえもRayleigh散乱の領域 となるため、反射率に強い波長依存性が残ることに注意が必要 である。ナノ発泡体を熱線透過型の反射シートに適用するには、 如何に可視光領域の波長依存性を抑えるよう設計できるかが課 題となる。

3.3 光の透過性と拡散性の制御

ナノ発泡体のような気泡核数の極めて多い発泡体を得るため には、高い浸透量が重要であった。これとは逆に浸透量を低く 抑えることで、数十µm程度の気泡が疎な状態で存在する発泡 体を得ることができる。こうした発泡体の光学特性を議論する のがこの節の目的である。

図10に示したSEM写真は、180 µm厚みのPCシート(PC-2151 帝人化成社製) に5.0 wt%のガスを浸透させ、80℃から 120℃の範囲で加熱して発泡を行なったシートの断面写真であ る。このような条件で作製した発泡体には数十µm程度の気泡 が疎な状態で存在し、そのためシートは透過型の光拡散性を有 する。光の透過性と拡散性の関係はシート内部に作られた気泡 の数に左右され、図10aのように気泡が少ない場合には透過性 が高く、図10cのように気泡が多い場合には拡散性が強く現れ る。このように、発泡温度を調節することで透過する光の量と 拡散度合いを制御することが可能である。この状況を明確にす るため、シート内部の気泡数を少しずつ変化させた場合の拡散 分布の移り変わりの様子を示したのが図11である。水平に置 かれたシートに対して下方から光を当て、上方に通り抜けた透 過光の強度分布を極座標で表している。ただし、すべてのサン プルの強度分布は0°(入射した光が散乱されずに真っ直ぐ通り 抜ける角度)の値で規格化している。この結果,光がほぼ前方 に通り抜けるもの(A)から拡散度合いが非常に強いもの(G)ま で幅広く、かつ連続的に制御できることが分かる。

次に、シートの光拡散性を利用して、液晶ディスプレイのバッ クライト部材である拡散板としての適用を検討した。直下型 バックライトは、光源である複数の冷陰極管(CCFL)が等間隔 に設置された構造になっており、このままではディスプレイ上 に輝度ムラと呼ばれる明暗が生じてしまう。そこで、光源の光 をできるだけ拡散させて輝度ムラを解消するのが拡散板の役目 である。今回の検討では、拡散度合いが拡散板に近い図11に おけるBのタイプの発泡体を選択した。

さて、20インチ液晶テレビの直下型バックライトに発泡体 を固定し、さらに光学シート(拡散フィルムとプリズムシート) を乗せた状態で画面正面から見た場合の輝度分布を測定した。 図12aは、輝度分布を等温図のような形式で表現したもので、 画面左側には現行品の拡散板を使用した場合の輝度分布が、画 面右側には発泡体を使用した場合の輝度分布がそれぞれ示して ある(発泡体は図の点線部分に固定されている)。また,図12a 内の2本の矢印ABとCD上の輝度分布をグラフで示したもの が図12bである。発泡体の拡散板としての性能を評価するため, 図12bの輝度分布から求まる平均輝度と輝度ムラ(標準偏差) を求めて現行品との比較を行なった。結果を(平均輝度±輝度 ムラ)の形で表すと,現行品(6424±239)cd/m²に対して発泡 体は(6223±195)cd/m²であった。

以上の結果から,発泡体を用いた場合の平均輝度は現行品に 比べて若干低い値となったものの,拡散板としての役割を十分 果たしていることが分かる。問題は,現行品と同じ輝度を持つ 発泡体を用いた場合の輝度ムラが現行品に比べて低減されるか である。今回のように気泡で光散乱を行なう方法は,微粒子を 用いる方法に比べて光吸収が抑えられることを考えれば,発泡 体の気泡を制御することで光の透過性と拡散性を同時に向上で きる可能性は十分ある。これについては今後の課題である。

a) w =5.0 wt%, T_f =80°C

b) w=5.0 wt%, T_f=110°C

c) w=5.0 wt%, T_f=120°C

図10 PC発泡体のSEM写真 SEM images of PC foams.

図11 PC 発泡体の透過光の角度分布 Angular distributions of transmitted light through PC foams.

a)正面の輝度分布

b)矢印に沿った輝度分布

図12 液晶テレビを用いた輝度測定 Surface luminance of a liquid crystal television using a foamed sheet as light diffuser.

3.4 クレイズ状の空隙と光透過率の入射角依存性

ここまでの議論では,発泡体の気泡が球形であることを前提 に話を進めてきた。我々の研究によれば,MCPプロセスを利 用することで球形とは異なるクレイズ状の空隙を作ることも可 能である。本節では,その形状と光学特性について報告する。

クレイズ状の空隙を有するシート(以下,クレイズシート) の作製には、高い浸透量と樹脂の T_g よりも十分低い加熱温度 が鍵となる。3.2節で取り扱ったPESシート($T_g = 223$ ℃)の場 合、浸透量20 wt%のサンプルを90℃で加熱することによりク レイズシートを得ることができる。クレイズ状のひび割れの様 子を図13aに示す。空隙の幅はおよそ300 nm程度であり、シー ト正面から見ると複数の空隙から成るブロック状の塊が幾重に も重なったような形態をしている。また図13bはシート断面の 写真であるが、シート中央部に光を強く散乱する領域を確認す ることができる。このことから、クレイズ状の空隙はこの部分 に集中して存在しているものと推測できる。

図13 クレイズシートの光学顕微鏡写真(左はシート正面, 右はシート断面の写真) Photographs of a crazed sheet (PES), the surface view (a) and the cross-section view (b).

クレイズシートの光学特性は特徴的である。これを見るため に、瞬間マルチ分光計 (MCPD-1000 大塚電子社製)を用いて 実施した2つの評価結果を紹介する。1つ目の評価方法を**図14**a に示す。シートに対する光の入射角 θ をそれぞれ30°と45°, 60°に固定し、受光器側の角度 ϕ を変化させたときの580 nm 波長光の透過率を測定する。ただし、ここでの透過率は光源と 受光器の間に何も設置せず、かつ $\theta = \phi$ とした場合の光強度を 100%として計算している。結果は図14bで与えられるが、こ れより $\phi = \theta$ と $\phi = -\theta$ の2箇所に透過光のピークが現れるこ とが確認できる。このうち $\phi = \theta$ のピークはシートをそのまま 透過した光によるものだが、一方の $\phi = -\theta$ のピークは通常 のシートには現れないクレイズシート特有のものである。

図14 クレイズシートにおける透過光の ϕ 依存性 Detector angle ϕ dependence of light transmission on crazed sheets.

2つ目の評価方法を図15aに示す。今度は光源と受光器を一 直線上に固定し、サンプルシートの角度 θ を変化させた場合 の580 nm波長光の透過率を測定する。透過率の定義は先と同 様である。結果を図15bに示す。垂直入射(θ =0°)の透過率が 70%と高い数値であるのに対し、 θ =30°以上では透過率が30% 未満にまで低下している。すなわち,クレイズシートは正面からは見えやすく,斜めからは見えにくいという,いわゆる視野 角選択性を有することが分かる。

図15 クレイズシートにおける透過光の θ 依存性 Incident light angle θ dependence of light transmission on a crazed sheet.

以上のような光の振る舞いを理解するためには、クレイズ シートの空隙が2次元的で、かつ複数の空隙がシート平面に対 して垂直な方向に並んだ**図16**のような模型を考えるとよい。 このとき、図14bで見られた $\phi = -\theta$ のピークは、入射光が空 隙の面上で全反射された為に現れたものと考えることができ る。また視野角選択性に関しては、 $\theta = 0^{\circ}$ の入射光が空隙の長 手方向と一致するため散乱されにくいのに対し、 $\theta \neq 0^{\circ}$ の入 射光に対しては空隙と樹脂の多層構造となるため光は散乱され やすい。この結果、図15b)のような透過率の入射角依存性が 現れるのだと思われる。なぜこのような構造をとるのかについ ては現在究明に努めており、空隙の方向を制御するといった視 点からも研究を進めている。気泡形状を制御する技術は気泡径 の制御同様に難しい課題であるが、今回のクレイズ状の空隙を 制御できるようになれば、発泡体を利用して更に幅広い光特性 制御が可能になるものと思われる。

図16 予想されるクレイズシート内部の空隙の構造 An internal structure model of a crazed sheet predicted from optical properties.

4. おわりに

本報告書では、MCPプロセスを利用した発泡体の気泡制御 について紹介し、気泡制御を行なうことでどのような光学特性 が現れるかを議論した。気泡の微細制御に関しては樹脂への浸 透量が本質的であり、高い浸透量を達成することで気泡がナノ 化することを確認した。また、ポリカーボネートシートを用い た実験では、発泡倍率2倍以上のナノ発泡体が得られる事実を 示すことができた。これは、気泡の微細化に伴う発泡倍率の低 下を1 cm³当たり10¹⁵個のオーダという劇的な数の気泡が補っ た結果であると考えている。

一方光学特性に関しては、気泡制御を行なうことで光の反射 率の向上や熱線の透過、光の透過拡散性などの機能が現れるこ とを説明し、それらの用途展開についても議論を行なった。ま た、MCPプロセスによってクレイズ状の空隙を持つシートが 得られることに触れ、その特徴的な光学特性についても紹介し た。球形以外の空隙がMCPプロセスで作れる事実は気泡の形 状制御に繋がる可能性があり、引き続き研究を行なっている。

現在の当社における気泡制御の研究の主流は,更なる気泡の 微細化と高発泡倍率化の方向へ向かっている。特に,当初予想 された透明発泡体や超断熱発泡体に対しては大きな興味を持っ ている。更なる気泡制御技術の向上によって,発泡体をより広 い分野に送り出せるよう努力していく所存である。

参考文献

- 1) 株本昭,伊藤正康,中山清,岡田光範,吉田尚樹:成形加工'06 (2006), xxxi.
- 2) 瀧健太郎, 藁谷友祐, 大塚哲央, 大嶋正裕:成形加工 '06(2006), 111.
- L. Li, T. Nemoto, K. Sugiyama and H. Yokoyama : Macromolecules, 39(2006), 4746.
- Y. Ito, M. Yamashita and M. Okamoto Macromol. Mater. Eng., 291 (2006), 773.
- Y. Fukasawa, J. Chen and H. Saito : J. Polym. Sci. Part B: Polym. Phys., 46(2008), 843.
- 高田知行,小島淳也,清水夕子,神野文夫:成形加工,19(2007), 228.
- J. E. Martini : M. Thesis in Mechanical Engineering, M. I. T., January, (1981).
- 8) J. S. Colton and N. P. Suh : Polym. Eng. Sci., 27(1987), 485.
- B. Krause, P. Munuklu, N. F. A. van der Vegt and M. Wessling : Macromolecules, 34(2001), 8792.
- 10) T. S. Chow : Macromolecules, 13(1980), 362.