高効率光波長変換を実現するSBS抑圧高非線形ファイバの開発

Development of SBS-Suppressed Highly Nonlinear Fiber for High efficient Optical Wavelength Conversion

高橋正典* 高坂繁弘* 味村 裕* 忠隈昌輝* 杉崎隆一* Masanori Takahashi Shigehiro Takasaka Yu Mimura Masateru Tadakuma Ryuichi Sugizaki

概要 光ファイバで発生する非線形現象を利用する光波長変換は、高速・大容量光通信を実現する ための高速光信号処理技術の一つとして期待されている。我々はこれまでに非線形現象を利用するア プリケーションに適した特性を持つ高非線形ファイバ(HNLF)を開発してきた。HNLFを使用した光 波長変換を高効率化するために、誘導ブリルアン散乱(SBS)の発生を抑圧したHNLFを開発した。 設計及び試作したSBS抑EHNLFにおいて、SBSしきい値を7.2 dB向上させることに成功し、SBS 抑圧効果によりポンプ光に位相変調させることなく、単一のポンプ光を用いた波長変換実験において 最大変換効率1.5 dBという極めて高効率の波長変換を実現した。

1. はじめに

光ファイバに高強度の光を入射した際に起こる非線形現象は 伝送路中におけるノイズや波形のひずみの発生により信号品質 を劣化させる。このため、伝送路用ファイバにおいては非線形 効果を極力小さくすることが求められている。一方、近年この 非線形現象を利用した応用事例が盛んに検討されており、四光 波混合 (FWM: four wave mixing)や自己位相変調 (SPM: self phase modulation)などを積極的に利用することにより、複数 の波長の信号光を一括して波長変換することや波形再生、光パ ルス圧縮、広帯域光源などへの応用事例が多数報告されている。 我々はこれまでにこれらの非線形現象を利用したアプリケー ションに適した特性を持つ高非線形ファイバ (HNLF: highly nonlinear fiber)¹¹の開発を行ってきた。

HNLFは通常の伝送路用ファイバと比較すると10倍以上高 い非線形性を有し、効果的に非線形効果を得ることが可能な設 計となっている。光ファイバ中で得られる非線形効果の指標と しての最大非線形位相シフト量 φ_{max} は (1) 式で算出される。

$$\phi_{\max} = \gamma P_0 L_{\text{eff}} \tag{1}$$

ここで、 yは光ファイバの非線形定数、 P_0 はファイバへの 入射光強度、 L_{eff} はファイバの有効長である²⁾。(1)式から大き い yを持つHNLFは大きな ϕ_{max} を得るのに有効であることが 分かる。更に、 P_0 を大きくすることも大きな ϕ_{max} を得るため には有効である。しかし、 P_0 は誘導ブリルアン散乱 (SBS: stimulated brillouin scattering)²⁾により制限されるため、(2) 式で与えられる SBS しきい値 $P_{\rm th}$ 以上に高めることは不可能となる。

$$P_{\rm th} = 21 \frac{KA_{\rm eff}}{g_{\rm B}L_{\rm eff}} \left\{ 1 + \left(\frac{\Delta v}{\Delta v_{\rm B}} \right) \right\}$$
(2)

ここで、Kは偏波依存性パラメータ、 A_{eff} は光ファイバの有効断面積、 g_B はブリルアンゲイン定数、 Δv は光源の線幅、 Δv_B はブリルアンゲインスペクトル (BGS: brillouin gain spectrum)の線幅である²⁾。HNLFは高い γ を実現するために A_{eff} が小さくなるように設計されている。そのため、(2)式に あるようにHNLFのSBSしきい値は低くなり、SBSの影響を 顕著に受けることが問題となる。

HNLFを使用したアプリケーションにおいてSBSが特に問題 となる例としてFWMを用いた光波長変換がある。FWM波長 変換に用いられるHNLFに求められる特性は、ポンプ光入射 波長(λ_P)における低分散性、分散特性の長手方向安定性、低 い偏波保持特性 (PMD)などである。更に変換効率を向上させ るには、ポンプ光強度 (P_P)の増加、ファイバ条長の伸長が挙 げられるが、この二点は(2)式から P_P をSBSしきい値以上に 設定することは不可能であり、ファイバの長尺化はSBSしき い値を下げる方向に働くため、これらの効果による変換効率の 向上はSBSによって制限される。FWM波長変換におけるSBS 回避の技術としては、ポンプ光を位相変調し側帯波を発生させ ることでスペクトル幅 Δv を広げSBS発生を緩和する方法が或

^{*} 研究開発本部 ファイテルフォトニクス研究所

いはよく知られている。しかしこの方法ではFWMで発生する アイドラー光も位相変調の影響に曝されてしまい,位相変調さ れた光はその後の伝送においてパワーペナルティーの劣化を引 き起こす³⁾。また,HNLFを用いたファイバデバイスは本来簡 易な構成を特長としているが,このようなSBSの抑圧法では 過大な電気制御システムを必要とし,この問題が実用的なファ イバデバイスの導入に障害となることも想定される。これらの 問題を回避するために,HNLF自体の効果的なSBS抑圧法が強 く求められている。

本報告ではHNLFに求められる非線形効果を利用したアプ リケーションに適した光学特性を維持しつつ,効果的にSBSを 抑圧する手法を提案する。また,この提案手法に基づいて設計, 試作したHNLFの特性及び試作したHNLFを使用した高効率 なFWM波長変換実験の結果を報告する。

2. SBS 抑圧 HNLF の設計

2.1. 従来のHNLFのSBS抑圧方法

HNLFの特長としては先に述べたように、高非線形性、所望 の分散特性(低分散、分散均一性など)及び低PMDなどが挙げ られる。SBS抑圧HNLFを設計するうえではこれらの特長を失 わずにSBS抑圧を実現することが重要となる。

SBSの問題はHNLFに限らず、通常の伝送路用ファイバにお いても議論されており、これまでにSBSを抑圧したファイバ も報告されている^{4).5)}。これらの事例ではそれぞれファイバの 長手方向でコア径を変化させること及び、コアにGeO₂とFを 共添加するという手法でSBS抑圧を実現している。しかしな がら、これらの手法は主に伝送路用ファイバへの適用を想定し た手法であり、HNLFへの適用は困難である。なぜなら、 HNLFは伝送路用ファイバと比較すると、コアとクラッドとの 屈折率差が非常に大きく、特殊な設計となるため、SBS抑圧と 同時にHNLFに求められる特性を満たすのは困難だからであ る。

HNLFのSBS抑圧を検討した事例も報告されている $^{6,7)\circ}$ これらはそれぞれコアに添加するドーパントをGeO₂から Al₂O₃に換えた事例及びGeO₂添加量の異なるコアを持つ HNLFを接続する手法である。しかし、現在までに報告されて いるAl₂O₃コアを使用したHNLFでは、通常1 dB/km程度で あるHNLFの伝送損失が37 dB/kmと非常に大きくなることが 問題である。また、GeO₂濃度分布構造のHNLFでは、大きく SBSを抑圧するためにはコアの異なるHNLFを多数作製し、接 続しなければいけない点が問題となる。

上記に示すように、これまで報告されている手法では効果的なHNLFのSBS抑圧を実現するのが困難である。

2.2. 新しいSBS 抑圧方法

新たなHNLFのSBS抑圧方法として、ブリルアンシフト周 波数がファイバにひずみを印加することで変化する現象®を利 用する方法を我々は提案する。ファイバの長手方向で局所的に 印加するひずみを変化させることによりファイバ全長でのブリ ルアンシフト周波数を分散させることが可能であると考えられ る。SBSはブリルアンゲインが大きいほどより強く発生するの で、ブリルアンシフト周波数が分散することでブリルアンゲイ ンが減少することにより、SBSの発生が抑圧されることを期待 できる。実際にHNLFにひずみを印加し,BGSを観測した。 測定に使用した測定系を図1に,測定結果を図2に示す。図1 において,TLSは波長可変光源,EDFAはエルビウム添加ファ イバ増幅器,VOAは可変光アッテネータ,OEは光-電気変換 器である。測定に使用したTLSは波長1550 nm,線幅200 kHz に設定した。BGSは,TLSの出力を参照光とし,この参照光と ファイバからの後方散乱光を合波して得られるビート光をOE で検出するヘテロダイン検波法で得られる電気信号をRFスペ クトラムアナライザで測定することで取得した。図2では初期 状態とHNLFの条長がそれぞれ0.2%,0.4%,0.6%伸びる張力 を印加した状態でのBGSを示す。この結果から,HNLFに張 力(=ひずみ)を印加することでブリルアンシフト周波数が高 周波側にシフトすることが明らかとなった。今回の測定では, 0.6%の張力水準において,およそ200 MHzのブリルアンシフ ト周波数変化を観測した。

図2 ひずみ印加状態でのBGS Measured BGS of the HNLF under a range of strain.

2.3. ファイバの分散設計

ひずみ印加によるブリルアンシフト周波数変動を利用して SBSの抑圧HNLFを実現するためには、ファイバにひずみを印 加した状態で保持する必要がある。この方法としては、ファイ バに張力を加えてボビンに巻き取り、ボビンとファイバを固定 して保持するのが有効である。そして、これに使うファイバに は、クラッド径を細径化したHLNF⁹⁾が有利であると考えた。 理由は、少ない張力で効果的にひずみを与えることができるた め、より現実的な低荷重でひずみ分布を与えることが可能とな るからである。

光ファイバに張力を加えると、印加した張力に応じてファイ バ長が伸び、その伸びに応じてコア径が縮小する。HNLFはそ の設計上の特長として、コアとクラッドの間に非常に高い屈折 率差を持つため、波長分散特性などの光学特性はコア径の変化 に対して非常に敏感に変化する。図3にHNLFのコア径の変化 に対する分散特性の変化をシミュレーションした結果を示す。 本シミュレーションでは波長1550 nmにおいてゼロ分散を実 現する通常のHNLFについて、コア径を変化させた際の分散 値の変化を算出した。この結果、コア径が1%変化した際の分 散値の変化量はおよそ0.8 ps/nm/kmであることが分かった。 この効果により、分散特性が一定のHNLFの長手に異なるひ ずみ(=伸び)を印加することで分散特性も分布構造となって しまうことが想定される。張力分布構造による SBS 抑圧と、分 散特性のファイバ長手における均一性を両立させるためには, 張力分布構造により変化する分散値の量をあらかじめ見積も り、その変化量に相当する分だけ初期状態で分散値を変化させ ておく必要がある。この構造を実現するためにHNLFの製造 時にクラッド径(コア径)を変化させてファイバ化することで いわゆる分散値減少構造とし、上記の特性を実現する設計とし た。

図3 コア径の変化に対する HNLF の分散値の変化 Calculated dispersion change induced by core diameter fluctuation on HNLFs.

3. 細径分散減少HNLFの特性

ひずみ分布状態でSBSの抑圧と分散特性の長手方向均一性 を実現させるためのHNLFを設計し,試作した。初期状態で 分散減少構造を実現するために試作したHNLFではファイバ 長100 m当り0.4 μmの割合でクラッド径を変化させた。分散 減少効果を評価するために,試作したHNLFのファイバ長手 方向の分散特性の分布を非線形OTDR法¹⁰⁾により測定した。 測定データをフィッティングして得られた分散分布曲線を**図4** に示す。図4においてファイバ長が0 mの側をInput側,ファ イバ長が120 mの側をOutput側とした場合,Input側での分散 値は,Output側と比較するとほぼ計算どおりのおよそ 0.6 ps/nm/km変化した値となっており,分散減少ファイバ (HNL-DDF: highly nonlinear-dispersion decreasing fiber)を 実現した。ファイバに伸びを印加した際に分散値の変化量が 0.6 ps/nm/kmとなる伸び量をシミュレーションにより算出し たところ、およそ1%であることが分かった。この結果、Input 側に約1%の伸びを印加することにより、Output 側と同じ分散 値に調整可能となる。Input 側からOutput 側に向かって分散値 が小さくなっていく変化に合わせて印加する伸びを少なくして いくことにより、張力分布構造時にファイバ長手方向で均一な 分散特性を実現可能となる。この効果により十分なSBS抑圧 効果と分散特性の均一性が両立できると考えられる。

図4 試作したHNL-DDFの分散分布 Dispersion distribution of the prototype HNL-DDF.

試作したHNL-DDFの平均分散値分布以外の主な特性を**表1** に示す。ファイバに伸びを与えるのに必要な張力はほぼクラッ ドの断面積に比例する。試作したHNL-DDFではクラッド径を 通常の125 µmから約64 µmまで細径化したため,通常のク ラッド径のファイバと比較するとおよそ1/4の低張力で伸びを 実現可能となる。これにより,現実的な低荷重で張力分布構造 が実現可能となり,更に長期間に渡る安定した張力分布状態の 保持にも有効であると考えられる。また,試作したHNL-DDF はHNLFに求められる高非線形性及び低損失性などの特性も 同時に実現している。

 Characteristics of the prototype HNL-DDF. (at 1550 nm).

 クラッド径 (Input)
 µm
 64.0

 クラッド径 (Output)
 µm
 63.6

 平均分散値
 ps/nm/km
 0.59

 伝送損失
 dB/km
 1.53

W -1 km -1

試作した HNL-DDF の特性 (@ 1550 nm)

表1

非線形定数

4. SBS 抑圧 HNLF の特性

試作したHNL-DDFに張力分布構造を与えSBS抑圧HNLF を作製し、SBS抑圧の効果を検証するために、SBS抑圧特性及 びSBS抑圧によるFWM波長変換の高効率化の実証実験を行っ た。

23

4.1 SBS 抑圧 HNLF の作製

初めにHNL-DDFに張力分布を与える実験を行った。本実験 においては、通常の光ファイバの巻き取りに使用する装置によ りファイバをボビンに巻き取る際に、ファイバに印加する巻き 張力を変化させながらファイバをボビンに巻き取り、張力分布 状態を実現した。印加した張力は最大でファイバが1%伸びる 張力に設定し、分散値の変化に合わせて徐々に印加する張力を 減少させた。この結果、波長1550 nmにおける120 m全長での 平均分散値は、初期状態の0.59 ps/nm/kmから張力分布付与 後には0.17 ps/nm/kmとなり、この状態で均一な分散特性が 得られていると考えられる。

4.2 SBS 抑圧効果

HNL-DDFの初期状態と張力分布付与状態での両方の状態で BGSをそれぞれ測定した。測定に使用した測定系,測定条件 は図1に示すものと同等とした。測定したBGSを図5に示す。 図5から初期状態のBGSにはブリルアン周波数9.25 GHzに急 峻な第一ピークが観測され,このピークの線幅(3 dB幅)は 20 MHz程度であった。これに対し,張力分布を与えた場合の 第一ピークは高周波方向に分布し,線幅は330 MHzに拡大し た。スペクトルが広帯域化したことにより,ピークのゲインが 大幅に減少したため,SBS抑圧効果が期待できる。また,張力 分布付与後のファイバには広帯域化したピークが平坦に広がっ ていることから,ファイバ全長に一定の割合で張力が変化する 張力分布構造が実現していると考えられる。

図6に初期状態と張力分布状態でのSBSしきい値の測定結果 を示す。SBSしきい値測定においてもBGS測定に使用したも のと同等の光源を使用した。張力分布によるSBS抑圧効果が 顕著に見られ、SBSしきい値は7.2 dB向上した。

以上の結果から、HNLFを張力分布構造とすることによる BGSの広帯域化及び最大ゲインの抑制により十分なSBS抑圧 効果が得られることが確認できた。

張力分布状態の時間的安定度を調査するために12ヶ月間室 温で保管後に再度測定を行い,加工直後と12ヵ月後で分散特 性,BGS及びSBSしきい値に変化がないことを確認した。

図5 HNL-DDFの初期状態と張力分布状態でのBGS Measured BGS of the HNL-DDF with and without strain distribution.

4.3 高効率 FWM 波長変換

張力分布HNL-DDFにより実現したSBS抑EHNLFを使用し てFWM波長変換実験を行った。実験に使用した実験系を図7 に示す。ポンプ光,シグナル光ともにTLSを使用し,それぞ れをEr添加ファイバ増幅器(EDFA)で増幅し,偏波面コント ローラ(PC)で偏光状態を調整した後,光カプラで合波した。 このポンプ光とシグナル光を偏光子(Pol.)を通した後にHNLF に入射した。出力を光スペクトラムアナライザ(OSA)で観測 した。HNLFを使用したFWM波長変換の利点の一つである簡 素な構成での光波長変換が実現可能な実験系となっている。

図7 FWM波長変換に使用した実験系 Experimental system for FWM wavelength conversion.

λ_PはFWM法¹¹)により測定したゼロ分散波長(λ₀)である 1544 nm にセットした。図8に変換効率とPpの関係を示す。本 実験ではポンプ光とプローブ光との波長差Δλは5 nmに設定 した。ファイバに入射されるプローブ光強度 (P_S)を0 dBm に 固定し、Ppを変化させた際にファイバから出力されるアイド ラー光の強度(P₁)を変換効率としてプロットした。SBS抑圧 がない初期状態のHNL-DDFを使用した場合,ファイバに入射 するPpはSBSしきい値付近の20 dBm程度に制限されるため, 変換効率も-15 dB程度に限られる。SBSが発生した場合, P_P を上げても入射した光は入射方向に戻されるため変換効率は向 上しないが、張力分布構造によりSBSを抑圧した結果、入射 可能な P_P が向上し, P_P が20 dBm以上の場合においても P_P の 増加に対して変換効率が向上している。SBS抑圧構造を持たな い場合と比較して、変換効率は約16 dB向上し、最大で1.5 dB の変換効率を実現した。光源に位相変調などを加えない、単一 のCW光によるポンプ光を使用した波長変換実験においては、 極めて高い変換効率を実現した。

図8 FWM 波長変換効率の比較 Measured wavelength conversion efficiency.

図9に λ_s を変化させた際の変換効率を示す。3 dB変換帯域 は60 nm以上であることが確認された。実験装置の制約から、 短波長側の変換効率が十分低下する波長まで λ_s を変化させて 測定することができなかったが、長波長側の測定結果から、全 体の3 dB帯域幅は80 nm以上と推定される。

図9 SBS抑圧HNLFの波長変換帯域 Wavelength conversion bandwidth of SBS-suppressed HNLF.

次にSBS抑圧と同時に張力分布状態で分散特性の均一化が 実現しているかどうかの評価を行った。図10にΔλを変化させ た際の正規化変換効率を示す。図10に示すプロットはそれぞ れHNL-DDFの初期状態と張力分布を与えた場合の測定値を示 し、実線は分散特性がファイバ長手で一定の場合の特性をシ ミュレーションした結果となる。本シミュレーションにおいて、 正規化変換効率ηは(3)式から算出した²⁾。

$$\eta = \operatorname{sinc}^2\left(\frac{\Delta\beta L}{2}\right) \tag{3}$$

ここで、 $\Delta\beta$ はファイバの分散スロープの波長依存性を示す 4次分散 β_4 によって与えられる位相不整合を示すパラメータで あり、張力分布状態のHNL-DDFの分散特性の測定値から算出 した値を使用した。ファイバ長Lは120 mに設定した。初期状 態のHNL-DDFの3 dB変換帯域は15 nm以下となり、ファイ バ長手方向の分散変化の影響が顕著に観測された。これに対し、 張力分布状態では変換帯域の大幅な広帯域化が実現している。 また,分散均一状態を想定した計算値と比較してもそれに近い 特性が得られていることから,設計どおりにHNL-DDFに張力 分布を与えた状態で均一な分散特性が実現していると考えられ る。

図10 正規化変換効率の比較 Normalized conversion efficiency of the HNL-DDF.

4.4 SBS 抑圧 HNLF を用いた波長変換特性

SBS抑E HNLFを使用した波長変換の伝送特性に与える影響 を調査するために符号誤り率(BER)測定を行った。図11に実 験に使用した装置の構成を示す。図7に示す波長変換実験装置 の構成に繰り返し周波数10 Gbit/s, NRZ (non return-to-zero) データ信号を発生するLiNbO3変調器(LN)を追加し、ノイズ を除去するために適宜バンドパスフィルタ(BPF)を使用した。 HNLFによりアイドラー光を発生させた後、アイドラー光のみ をBPFで取り出し、可変光アッテネータ(VOA)により強度を 調整し、光パワーメータ(PM)により強度を測定した。この変 換光を観測し、エラーディテクタ(ED)によりBERを測定した。

図11 BER測定に使用した測定系 Experimental system for BER measurement.

図12に測定結果を示す。本測定では λ_{S} を1537 nmに設定し、 この波長でのback-to-backをリファレンスとした。1544 nmの λ_{P} に対し、1550 nmのアイドラー光のBERを測定し、リファ レンス比較した。測定結果から、SBS抑圧HNLFを使用した高 効率波長変換時にもエラーフリー伝送及びパワーペナルティー が発生しないことを確認した。

図12 変換光のBER特性 Measured BER of the converted signal.

5. おわりに

本報告ではファイバにひずみを印加することでブリルアンシ フト周波数を制御し,効果的なSBS抑圧が実現可能なことを 示した。ファイバの伸びが最大で1%となる張力分布を与えた 際に分散特性が一定となるように設計及び試作した細径HNL-DDFを120 m使用し,張力分布構造を実現した結果,初期状 態と比較してSBSしきい値を7.2 dB向上させることに成功し た。このファイバを使用してFWM波長変換実験を行った結果, SBS抑圧効果により変換効率は16 dB以上向上し,最大変換効 率1.5 dBを得た。光源に位相変調を加えない,単一のCW光に よるポンプ光を使用した波長変換時の変換効率としては,極め て高い効率が実現した。更に,SBS抑圧状態での分散均一性も 実現した結果,従来のHNLFと同程度の水準の80 nm以上と 見込まれる3 dB変換帯域を実現した。高効率波長変換時の BER特性を評価した結果,伝送特性に劣化がないことを確認 した。

このように優れた特性を持つHNLFの使用により、よりフ レキシブルな高速・大容量光ネットワークの実現に貢献するこ とを目的とし、今後も実用化に向けた更なる開発を行っていく 予定である。

参考文献

- M. Takahashi, R. Sugizaki, J. Hiroishi, M. Tadakuma, Y. Taniguchi and T. Yagi: "Low-Loss and Low-Dispersion-Slope Highly Nonlinear Fibers," Journal of Lightwave Technology, 23, (2005), 3615-3624.
- G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. San Diego, CA: Academic Press, (2001).
- 3) R. Elschner, C. A. Bunge, B. Huttl, A. G. Coca, C. S. Langhorst, R. Ludwig, C. Schubelt and K. Petermann: "Impact of Pump-Phase Modulation on FWM-Based Wavelength Conversion of D (Q)PSK Signals," Journal of Selected Topics in Quantum Electronics, 14, (2008), 666-673.
- K. Shiraki, M. Ohashi and M. Tateda: "Suppression of stimulated Brillouin scattering in a fibre by changing the core radius," Electronics letters, **31**, (1995), 668-669.
- K. Imamura, N. Kumano, M. Tadakuma, R. Sugizaki, T. Yagil and Y. Koyamada: "6-dB SBS threshold improved optical fiber compatible with standard SMF," OECC2006, 6D1-3-1, Kaohsiung, Taiwan, (2006).
- 6) T. Nakanishi, M. Tanaka, T. Hasegawa, M. Hirano, T. Okuno and M. Onishi: "Al₂O₃-SiO2 Core Highly Nonlinear Dispersionshifted Fiber with Brillouin Gain Suppression Improved by 6.1 dB," ECOC2006, Th4.2.2, Cannes, France, (2006).
- 7) M. Takahashi, M. Tadakuma, J. Hiroishi and T. Yagi: "5.7 dB SBS suppression with a HNLF (module) Comprised of 3 HNLFs having Different GeO₂ Concentration," ECOC2007, P014, Berlin, Germany, (2007).
- Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi and W. Chujo: "Simulating and Designing Brillouin Gain Spectrum in Single-Mode Fibers," Journal of Lightwave Technology, 22, (2004), 631-639.
- M. Takahashi, Y. Mimura, J. Hiroishi, M. Tadakuma, R. Sugizaki, M. Sakano, and T. Yagi: "Investigation of a downsized silica highly nonlinear fiber," Journal of Lightwave Technology, 25, (2007), 2103-2107.
- 10) L. F. Mollenauer, P. V. Mamyshev, and M. J. Neubelt: "Method for facile and accurate measurement of optical fiber dispersion maps," Optics Letters, 21, (1996), 1724-1726.
- 11) S. E. Mechels, J. B. Schlager, and D. L. Franzen: "Accurate Measurements of the Zero-Dispersion Wavelength in Optical Fibers," Journal of Research of the National Institute of Standards and Technology, **102**, (1997), 333-347.