ナノ秒ファイバ型パルスレーザの開発

Development of Nano Second Pulsed Laser using Polarization Maintaining Fibers

松下俊一^{*,*2} Shun-ichi Matsushita 大谷栄介^{*2} Eisuke Otani 松下俊一^{*,*2} Taizo Miyato 常^{*,*2} Aliroshi Hashimoto 大谷栄介^{*2} Tatsuji Uchino 大谷味行^{*2}

概要 物質に入力する光エネルギーを時間的に制御できるパルスレーザは、レーザ加工分野のマー キングや微細加工で活用が進んでいる。近年、ファイバ型パルスレーザの登場により、高信頼、高輝 度、メンテナンスフリーなどの特長から、これまで主流であったCO₂レーザやYAGレーザからファ イバ型パルスレーザへ置き換えが急速に進んでいる。スループットの向上や加工材料の適用範囲拡大 のため、平均出力の増大や直線偏光出力、パルス幅や繰り返し周波数の可変性が求められる。当社で は、これらの要請を満たすため、外部変調型と直接変調型のパルス光源を用い、その出力を偏波保持 型YDF光増幅器で増幅するMOPA (Master Oscillator Power Amplifier)構成の偏波保持ファイバ型 パルスレーザを開発した。波長1064 nm、繰り返し周波数1 MHz、パルス幅は100 ns及び10 nsに おいて、最大出力70 W及び13 Wを実現した。

1. はじめに

近年、ファイバレーザの高出力化が進み^{1)~3)}、CO₂レーザ やYAGレーザが主流であった金属の溶接や切断、マーキング、 半導体やセラミックのスクライビングなど、レーザ加工分野で その置き換えが進んでいる。これらレーザ加工の多くは、光が 物質に吸収されて発生する熱による溶融や材料の物性変化及び 変質を利用する。セラミックスや半導体、シリコン、特にプラ スチックなどの樹脂や複合材料は、熱の影響により加工部周辺 の材料が劣化しやすく、加工品質の低下がおこる。加工品質を 向上するには、入力する熱量を高精度に制御する必要があるた め、光エネルギーを時間的に制御できるパルスレーザが利用さ れる^{4),5)}。ファイバ型パルスレーザとして、共振器のQ値を変 化させて光パルスを発振させるQ-Switch方式により、数10~ 100 kHz, 数10 W出力が実用化されており, 小型, 簡易かつ メンテナンスフリーなどのメリットから、マーキング用に多く 使われている。チタンやステンレスなどの金属のマーキングで は、光パルスの時間幅やエネルギーなどの諸条件を高精度に制 御することで金属表面に彩色ができるため、携帯電話やカメラ などの印字や装飾など、パルスレーザを用いた加工応用が広が り始めている。

ファイバ型パルスレーザは,ファイバ中の非線形効果や部品 の入力パワー制限のため,平均パワーや光パルスのエネルギー を上げることが難しい。加工のスループット向上や加工条件範 囲を拡大するには、平均パワーの向上のほか、繰り返し周波数 の高速化や波長変換のため定偏波出力が必要である。また、加 工技術の進展や応用範囲の拡大のため、パルス幅やパルスエネ ルギーのみならず繰り返し周波数などの光学パラメータの制御 性の向上が求められている。

上述の要請を満たすため、当社では、外部変調型と直接変調 型のパルスSeed光源を用いた、MOPA (Master Oscillator Power Amplifier) 構成**図1**の高繰り返し、高出力の偏波保持 ファイバ型パルスレーザを開発した。

PM-YDFA : Polarization Maintaining double clad Ytterbium Doped Fiber Amplifier ISO : Isolator

図1 ファイバ型パルスレーザ (MOPA) の基本構成 Configuration of a Pulsed Fiber Laser (MOPA : Master Oscillator Power Amplifier)

^{*} 情報通信カンパニー次世代レーザー事業推進チーム

^{*2} 研究開発本部ファイテルフォトニクス研究所 光伝送部品開発部

2. ファイバ型パルスレーザ

光パルス発生方法は主に、光変調器などの光学シャッタを光 共振器内に配置し、時間的に共振器のQ値を変化させ光パルス を発振させる Q-switch発振方式、CWレーザからの出力を AOM (Acousto-Optical Modulator)やLN (LiNbO₃:ニオブ酸リ チウム)光強度変調器などで光パルスを切り出す外部変調方式、 Seed レーザの励起電流を直接変調し発振を時間的に制御する 直接変調方式がある。**表1**にファイバ型パルスレーザの光パル ス発生方法と特長を示す。

表1 ファイバ型パルスレーザのパルス発生方法(代表例) Methods of optical pulse generation of pulsed fiber laser (typical example)

	Q-Switch方式	外部変調方式 (AOM)	直接変調方式
パルス幅	数10 ns ~数100 ns	約30 ns ~	数100 ps ~
繰返し周波数	数10 kHz ~ 50 kHz	数10 kHz~	数10 kHz ~
特徴	高パルス エネルギー	パルス幅も 繰り返し周波数可変	

Q-Switch発振方式は、共振器中にAOMなどの光スイッチン グ素子を配置することで光パルス発振が行えるため、部品点数 が少なく、比較的エネルギーの高い光パルスを発生させやすい。 一方、繰り返し周波数やパルス幅は共振器の特性に依存するた め、それらの値はある範囲に制限される。

外部変調方式は、レーザ発振とパルス生成が物理的に切り離 されるため、これらを上手に組み合わせることで、出力波長や スペクトル特性、時間波形や繰り返し周波数などのレーザの特 性を目的に合わせた柔軟な設計が可能である。

直接変調方式は、半導体レーザの駆動電流を直接変調するため、外部変調方式と同等の特性を有しながら、部品点数の削減 が行える利点がある。これら外部変調方式や直接変調方式の Seedレーザから出力される光パルスのパワーは、Q-Switch発 振方式と比較して小さい。レーザ加工に必要なパワー及びパル スエネルギーを得るには、高利得、高出力のファイバ型光増幅 器が必要になる。そのため、光増幅器に使うファイバ長が長く なりやすく、ファイバ中の非線形効果によるエネルギー拡散や 波形歪などを回避する技術開発が必要である。

3. Seedパルスレーザの開発

3.1 外部変調方式

CWレーザを種光源とし、AOMやLN光強度変調器により 時間的に光を切り出すことで光パルスを生成する外部変調方式 は、CWレーザと外部変調器の組み合わせで、パルスの波形や 時間幅、繰り返し周波数などの基本特性が決まる。

光シャッタとして一般的に用いられる AOMは,比較的高出 力に対応するものの,動作帯域を高くすると開口が小さくなる トレードオフの関係がある。ファイバインライン型の場合, AOMへの入出力に用いるコリメータのパワー耐性や,開口の 大きさに起因する結合損失の量で入出力パワーの上限が決ま る。現状,変調周波数が数100 MHz,光入力が数W,光パル ス時間幅が数10 ns ~ 100 ns程度が,実用的な値である。外部 変調器は、AOMの他、LN光強度変調器がある。光情報通信 の高速化により、10 GHz程度の高速な電気信号発生器やドラ イバICなどが入手可能になり、100 psレベルのパルス生成が 比較的容易になった。しかし、入力パワーが数100 mW程度と AOMと比較すると一桁低く、後段の光増幅を考慮するとASE (Amplified Spontaneous Emission)発生によるSNR (Signal to Noise Ratio)の低下が否めない。

以上を踏まえ、本開発では、高出力・高エネルギー光パルス 出力を目的に、ファイバレーザからのCW光を、ファイバイン ライン型のAOMで時間的に切り出す方式を、外部変調方式の Seedパルス光源に利用する。

図2に外部変調方式のファイバ型パルスレーザの光学構成を 示す。ファイバレーザの共振器は偏波保持型イットリビウムダ ブルクラッドファイバ (PM-YDF: Polarization Maintaining Double Clad Ytterbium Doped Fiber) をFBG (Fiber Bragg Grating) で作成したHR (High Reflection Mirror)及びOC (Output Coupler)で挟むことで構成されている⁶⁾。中心波長 の安定化のためFBGは温度補償パッケージに収められている。 FBGの中心波長の温度依存性 (赤線), 温度補償後の特性 (青線) を図3に示す。温度補償を行うことで, -40℃~80℃の領域 で中心波長がほぼ一定であることがわかる。

図2 外部変調方式のSeedパルス光源の基本構成 Configuration of pulsed seed laser using external modulation. MM-LD: Multi Mode Laser Diode

図3 FBGの中心波長の温度依存性(赤線)と温度補償パッケージによる中心波長の温度依存性(青線) Temperature dependence of center wavelength of FBG. Uncompensated (Red), Compensated (Blue)

偏波保持イットリビウムファイバレーザからの出力は、150 MHzの帯域を持つAOMに入力され、100 ns程度の光パルス に切り取られる。繰り返し周波数は1 MHz,光パルスのピー クパワーは約1.5 Wである。電気信号と光パルス波形を図4に 示す。100 nsの矩形電気信号に対し、約88 nsの光パルスが生 成されている。

図4 外部変調方式のSeed レーザからの出力波形特性 (黄色:変調電気信号,緑色:光パルス波形) Output pulse shape from pulsed seed laser using external modulation. Pulse shape. modulation signal (Yellow), Optical pulse shape (Green).

3.2 直接変調方式

半導体LDの駆動電流を直接変調する直接変調方式は,外部 変調器と同様に,GHz帯域のドライバICや半導体LDにより, 10 ns以下の光パルス発生が簡易かつ安価にできるようになっ た。直接変調方式はDuty比が小さい場合でも,LN変調器のよ うにゼロレベルのドリフトを制御する必要がない。更に,半導 体LDは高速応答特性に優れるため,主に100 ns以下のパルス 生成や,光パルスの任意波形成形,GHz帯域までの高繰り返 し化が可能である。LDの制御温度を調整することで,中心波 長の調整も可能である。図5に半導体LDの直接変調による光 パルスの時間波形を示す。

パルス幅, 5 ns ~ 100 nsの範囲で制御性良く光パルスが出 力されていることがわかる。パルスピークパワーは約100 mW である。

図5 直接変調方式による光パルスの時間波形 (パルス幅 5 ns ~ 100 ns, 繰り返し周波数100 kHz時) Optical pulse shape from direct modulated Laser Diode. (5 ns - 100 ns at 100 kHz)

3.3 パルスレーザ駆動用制御回路

AOMやLN強度変調器,半導体LDを制御するため,プログ ラム可能なデジタル電気信号を発生し,Seed用LDや励起用 LDの駆動電流を制御する制御基板を開発した。図6に制御ブ ロック図を示す。

図6 パルスレーザ制御基板の制御ブロック図 Control block diagram of pulsed laser control board.

制御基板は,各モジュール制御基板に制御信号を送り,変調 信号や,LD駆動電流,温度を制御する。各光出力はモニタされ, 出力一定制御やシャットダウンなどの安全機能,外部からの ON/OFF信号,PCからのコマンド入力に対し,動作ルーチン を安全に遂行する機能を有する。

4. 光パルス増幅器

開発した2種類のパルスSeedレーザは、図1に示すように、 2段の偏波保持イットリビウムダブルクラッドファイバ光増幅 器で所望の出力まで増幅する。光パルス増幅器の構成を図7に 示す。

入力光パルスは、PM-TFB (Tapered Fiber Bundle)を介し、 イットリビウム添加ファイバに入力される。励起光にはマルチ モードレーザダイオード (MM-LD)を用い、TFBにより最大 18台まで接続可能である。本構成の光パルス増幅器では、プ リアンプに1台、ブースタアンプに6台の25 W MM-LDを接 続している。ブースタアンプは最大150 Wの励起が可能であ る。各アンプは、ファイバ中のSRS (Stimulated Raman Scattering)の発生を最小限に抑えるため、ファイバ長と利得 を最適化した。

図7 イットリビウムファイバ光増幅器の構成 Configuration of the Polarization Maintaining Ytterbium Doped double clad Fiber Amplifier.

4.1 外部変調方式パルスの増幅

図8に外部変調方式パルスSeed 光を増幅した結果を示す。

図8 外部変調方式パルスレーザの出力特性 100 ns, 1 MHz Output Power from MOPA using External Modulation. 100 ns, 1 MHz.

パルス時間幅は100 ns,繰り返し周波数は1 MHzである。出 力は70 W超を示している。出力パワーの最大値を制限する一 つの要因は、ラマン散乱光の増加であるが、光増幅器の特性を 最適化することにより、信号出力に対しおおよそ-19 dBに抑 えられた。図9に70 W出力時の光スペクトルを示す。70 W出 力時の励起光-信号光エネルギー変換効率は、約45%である。

図9 外部変調方式パルスレーザの出力スペクトル (70 W出力時) Spectrum of output from an MOPA using External Modulation (70 W).

4.2 直接変調方式パルスの増幅

直接変調方式光パルスSeed 光を増幅した結果を図10に示す。 パルス幅10 ns,繰り返し周波数1 MHzで,出力は13 W以上を 得た。出力7 Wにおけるスペクトルを図11に示す。

ブースタアンプの利得やファイバ長の最適化を行うことで, 信号 – SRS比50 dB以上を実現した。この時の励起光 – 信号光 エネルギー変換効率は,約29%である。

図10 直接変調方式パルスレーザの出力特性 10 ns 1 MHz Output power from an MOPA using direct modulation. 10 ns, 1 MHz.

図11 直接変調方式パルスレーザの出力スペクトル 10 ns, 1 MHz 7 W時 Spectrum of output from an MOPA using direct modulation. 10 ns, 1 MHz, 7 W.

5. 出力安定性とビームプロファイル

図12に外部変調方式のパルスレーザの出力安定性を示す。 平均出力70.5 Wに対し出力安定度は±1.6%と良好な結果を示 した。これは、Seedパルスの出力及び光増幅が安定している ほか、ファイバ中の偏波変動も小さいことを示している。出力 光の偏光消光比は20 dB以上であった。

 図12 外部変調方式の出力安定性 100 ns, 1 MHz 70 W時 連続測定 4 h, 出力安定度 ± 1.6%
Power stability of an MOPA using external modulation. 4 hours operation, The deviation from the mean is ± 1.6% at 100 ns, 1MHz, 70 W.

出力アイソレータからの出力光ビームプロファイルを図13 に示す。ビームはほぼガウシアン形状を示し、ビーム品質を表 すM²は1.33以下であった。レーザ加工向けのファイバ型パル スレーザとして十分な性能を示している。

 図13 外部変調方式パルスレーザの出力光のビームプロファイル (アイソレータから100 cm)
Beam profile of the output from the MOPA using external modulation. (100 cm from the Isolator.)

6. おわりに

高光出力・高繰り返しを目的として,外部変調方式,直接変 調方式を用いた2種類の偏波保持ファイバ型パルスレーザを開 発した。

ここで用いられた技術は,光通信分野で飛躍的な発展を遂げ ている高速光変調技術,高出力光ファイバ増幅技術,偏波保持 型ファイバや光部品の高出力化及び接続技術,各種非線形効果 抑圧技術がその背景にある^{7),8)}。

非線形効果の抑圧や利得を含めた光ファイバ増幅パラメータ の最適化により、外部変調方式では、100 ns、1 MHz時に平均 70 Wを超える出力を実現した。出力は平均値に対し±1.6%の 安定度を有し、偏光消光比は20 dB以上を示した。また、直接 変調方式では、10 ns、1 MHz時に13 W超の出力を実現した。

レーザの一つのパラメータであるレーザ出力の偏光は,これ まで多くのファイバレーザでは時間的に変動するものであっ た。本パルスレーザは,偏波保持ファイバや接続技術を駆使す ることにより,安定した直線偏光出力を実現している。ファイ バ出力による高輝度特性もあり,例えば波長変換技術と組み合 わせることで,532 nm帯や355 nm帯への波長領域の拡大につ ながる。今後,レーザ加工応用にとどまらず,バイオ・医療な どの検査装置やエネルギー分野などで,新しい応用技術を実現 するツールになることを期待する。

謝辞

本研究開発は、NEDO「次世代素材等レーザ加工技術開発プ ロジェクト」の一部で実施した。

参考文献

- D.J. DiGiovanni and M. H. Muendel, "High-power fiber lasers and amplifiers." Optics & Photonics News, 26, (1999)
- Y. Jeong, J.K. Sahu, D. N. Payne, and J. Nilsson. "Ytterbiumdoped large-core fiber laser with 1 kW continuous-wave output power" ASSP, PDP, (2004)
- A. Tunnermann T. Schreiber, J. Limpert, "Fiber lasers and amplifiers: an ultrafast performance evolution" Appl. Optics, Vol. 49, No.25, (2010)
- 4) レーザ加工ハンドブック、オプトロニクス
- 5) レーザーハンドブック, レーザー学会
- 6) 藤崎晃, "ファイバーレーザーの線幅制御と50 W出力偏波保持 出力"電工時報 123号(2009)
- 7) 田代至男, "高出力光アンプの開発" 電工時報 104号 (1999)
- 8) 松下俊一 "ファイバ型繰返し周波数可変超短パルス光源の開発" 電工時報 122号(2008)