鉛バッテリ状態検知センサ

~ 鉛バッテリの分極緩和曲線の拡張カルマン・フィルタを用いた関数フィッティング~

Battery State Sensor

 \sim Curve Fitting of Lead-acid Battery's Voltage Relaxation with Expanded Kalman-filter \sim

岩根典靖* Noriyasu Iwane

概要 自動車用鉛バッテリの状態を検知するために,短時間で安定開回路電圧(OCV)を予測する ことが求められている。我々はこれまでの開発で鉛バッテリの分極緩和挙動が5次以上の高次指数関 数で完全に表現可能であることを見出し,これを用いて短時間でOCVを予測する試みについて古河 電工時報120号で報告している。実際に関数を用いるに当たっては,実際の電圧挙動に合わせて関 数の最適係数を求める必要があるが,今回この演算手法として演算負荷の高い一般的な最小二乗法か ら,より演算負荷の少ない手法として知られる拡張カルマン・フィルタ演算に切り替えた演算を試み, その有用性を検討した。

1. はじめに

昨今アイドリング・ストップの急速な普及等により,車載バッ テリの状態を正確に検知する必要性は高まる一方である。これ に伴い従来からの電流センサを用いてバッテリに出入りする電 気量のみを管理する手法では充分でなくなり,電流,電圧,温 度のような直接的計測値に加えバッテリの充電率,劣化状態等 まで検知できる高機能なセンサが求められるようになってき た。

上記のようなセンサはBosch社, Hella社等のドイツのメー カーが先行する形で開発が進み, 2007年辺りから欧州の自動 車メーカーで車両搭載が開始された。日本の自動車メーカーで は2010年からホンダ殿がBosch社センサの採用を開始した。

当社においても古河電池株式会社殿と知見が共有できる環境 的基盤があることから、2000年頃からバッテリ状態に関わる 技術開発を行ってきており、2005年よりは同様の車載センサ に注力し、開発を進めてきた。その結果、2012年9月19日に 北米で発売開始されたホンダ殿アコードにおいて日本メーカー としては初めて車載バッテリセンサの採用実績を獲得した。

図1にその例を示す。

図1 ホンダ殿アコード向けバッテリ状態検知センサ Furukawa Electric '*Battery State Sensor*'.

当社が独自に開発した代表的なバッテリ状態検知技術とし て、バッテリの充電率(State of Charge:SOC)を推定する指標 である安定開回路電圧(Open Circuit Voltage:OCV)を高次指 数関数を用いて短時間で推定する技術があり、この内容につい て古河電工時報120号¹⁾にて既に報告している。本技術は、こ れまでの手法と比較して短時間で高精度なOCV推定すること を可能とするものであるが、一方で非常に負荷の高い演算を要 し、コスト・サイズの制約の大きい車載センサでの実装におい ては、その負荷低減が課題となっていた。

これまでは計算の確実さを優先し、演算負荷の高い Levenberg-Marquardt法²⁾による最小二乗演算を主体に開発を 進めてきており、前記ホンダ殿アコード向センサでも同手法に

^{*} 研究開発本部 自動車電装技術研究所 開発第1Gr

よる演算を実装している。一方同様の目的で使われ、より演算 負荷の少ない手法として(拡張)カルマン・フィルタ演算³⁾が知 られており、古河電工時報120号においても簡単な試行につい ては報告しているが、今回本格的にカルマン・フィルタ演算の 可能性検証を試行したので、その結果を報告する。

2. 鉛バッテリの平衡電位OCVとその緩和挙動

下記,式(1)に鉛バッテリの充放電に伴う化学変化を示す。

$$Pb + PbO_2 + 2H_2SO_4 \iff 2PbSO_4 + 2H_2O$$
(1)

式(1)において左辺が充電時,右辺が放電時を示すが,ここ で重要なのは鉛バッテリの大きな特徴として,放電が進むにつ れて電解液の硫酸が消費されて水に置き換わり,硫酸濃度が変 化することである。これは電解液濃度が充電率を表す直接的指 標になることを示す。

一方,酸化還元反応における平衡電位は,熱力学平衡論から 反応に関与する化学種の活量を用いてNernst方程式⁴⁾で表さ れる。鉛バッテリにおけるNernst方程式を式(2)に示す。

$$E = E_0 + (RT/F) \cdot \ln \left(aH^+ \cdot aHSO_4^- / aH_2O\right)$$
(2)

活量とは化学反応における分子総数のうち各分子の占める割 合で,通常モル分率が用いられる。また,E₀は標準電極電位¹⁾ と呼ばれ,前記Nernst方程式においては,全ての化学種の活 量が1とした場合に対応する。その値は化学種のギブス標準生 成自由エネルギーから一意的に算出され,鉛バッテリでは約 1.93 Vとなり⁴⁾,定数として扱える。

以上から,充電率は電解液濃度によって表され,バッテリ起 電力(換言すると電解液不均一の無い完全に静的な安定バッテ リ開回路電圧(=OCV)と言える)はモル分率(≒電解液濃度) で表現されることになり,言い換えるとバッテリ起電力が充電 率を知る指標となり得ると言える。

このOCVを鉛バッテリの充電率の指標とする考え方はごく 一般的な手法として広く用いられてきていたが,自動車用バッ テリのようなアプリケーションに展開するためには難しい課題 を有していた。それは,自動車の走行中はバッテリには常に充 放電電流が流れており,車両が停止した後にはバッテリ電圧は 安定OCVに収束して行くが,動的環境で発生した電解液不均 一は,その影響が解消されるまでに十数時間~数十時間の大変 長い時間を要することである。自動車の場合,車両の休止期間 はドライバーやその時々の状況でまちまちであり,十分な休止 期間を安定的に確保することは極めて困難と言わざるを得な い。

下記図2に充電分極を受けたバッテリの電圧が安定OCVへ

収束していく挙動を条件の厳しい-20℃環境で86400秒(=24 時間)観測した結果を示す。このように温度によっては24時間 経過してもバッテリ電圧は安定OCVに達しない。

3. 分極緩和挙動の関数表

車両で安定的に確保できる短時間の休止期間から安定OCV を予測する方法として、この分極緩和挙動を時間の関数で表現 し、この関数の時間無限大の収束電圧として予測できないかと 考え、検討を行い、その結果5次指数関数によって期待通りの 結果を得ることに成功した。このことは古河電工時報120号に て既に報告した通りである。5次指数関数の一般式を式(3)に 改めて示す。

$$y = f(x)$$

= y0 + al·exp(bl·x) + a2·exp(b2·x)
+ a3·exp(b3·x) + a4·exp(b4·x) + a5·exp(b5·x) (3)

前記図2の分極緩和挙動に対して市販データ解析ソフトウェ アOriginPro7.5Jを活用して関数Fitした結果を図3に示す。図3 を見て分かる通り指数関数の次数を上げるに従って実測と関数 が近づいていき、5次では相関係数R²は0.99998に至り、ほぼ 完全に挙動を表現できていると言って良い結果となっている。

図3 分極緩和曲線の指数関数Fitting結果(72時間のデータ) Results of high order exponential functions(72 h).

4. 最小二乗法とカルマン・フィルタ演算

前述した知見を我々の目的である安定OCVの予測に活用す るためには、分極緩和挙動を車載バッテリ状態検知センサで実 測し、前記OriginPro7.5Jを用いて行ったのと同様な関数Fitを センサに実行させる必要があった。OriginPro7.5Jの関数 Fittingエンジンには、Levenberg-Marquardt法による最小二 乗演算が用いられている。最小二乗法の基本的な考え方は、次 式(4)に示す通り実測データYnと関数値f(Xn)の偏差平方和 が最小となる関数係数の解を求めるものである。

$$\sum_{n=1}^{N} \left\{ \operatorname{Yn} - f(\operatorname{Xn}) \right\}^2 = \min$$
(4)

本検討で対象としている5次指数関数の場合,式(4)を解く ことは,式(3)に含まれる11ヶの係数に対応した,下記11ヶ の連立方程式(5)を解くことを意味する。

$$\sum_{n=1}^{N} \exp(b1) \cdot \{Yn - f(Xn)\} = 0$$

$$\sum_{n=1}^{N} \exp(b2) \cdot \{Yn - f(Xn)\} = 0$$

$$\sum_{n=1}^{N} \exp(b3) \cdot \{Yn - f(Xn)\} = 0$$

$$\sum_{n=1}^{N} \exp(b4) \cdot \{Yn - f(Xn)\} = 0$$

$$\sum_{n=1}^{N} \exp(b5) \cdot \{Yn - f(Xn)\} = 0$$

$$\sum_{n=1}^{N} Xn \cdot \exp(b1) \cdot \{Yn - f(Xn)\} = 0$$

$$\sum_{n=1}^{N} Xn \cdot \exp(b3) \cdot \{Yn - f(Xn)\} = 0$$

$$\sum_{n=1}^{N} Xn \cdot \exp(b4) \cdot \{Yn - f(Xn)\} = 0$$

$$\sum_{n=1}^{N} Xn \cdot \exp(b4) \cdot \{Yn - f(Xn)\} = 0$$

$$\sum_{n=1}^{N} Xn \cdot \exp(b5) \cdot \{Yn - f(Xn)\} = 0$$

$$\sum_{n=1}^{N} Xn \cdot \exp(b5) \cdot \{Yn - f(Xn)\} = 0$$

$$\sum_{n=1}^{N} \{Yn - f(Xn)\} = 0$$

このような非線形連立方程式には、特殊な例外を除いて一般 的には解析解法がない。そこで、実用的な解法としてはまず解 の初期値を決めて初期値から徐々に最適な解に近づけていく逐 次演算が用いられる。この逐次演算として現在最も広く用いら れている方法がLevenberg-Marquardt法である。

Levenberg-Marquardt法による解の更新の一般式を次式(6) に示す。

$$\mathbf{u}^{(k)} = \mathbf{u}^{(k-1)} - \left(\mathbf{H}_{u}^{(k-1)} + cD\left[\mathbf{H}_{u}^{(k-1)}\right]\right)^{-1} \times \nabla_{u} \mathbf{J}^{(k-1)}$$
(6)

ここでu^(k)が求めるべき係数のベクトルであり, 解が最適値 に収束するまで更新を繰り返す。Hu^(k)はヘッセ行列であり, その算出式は次式(7)で表される。今回の例では11×11の要 素を持つ行列であり, 1~Nの個々の取得データに対応して11 ×11の行列成分を偏微分によって計算し, 更にそれら全てを 加算していくものである。

$$\mathbf{H}_{\mathbf{u}}^{(k)} = \sum_{n=1}^{N} \left\{ (\partial \mathbf{f}(\mathbf{X}\mathbf{n}) / \partial \mathbf{u}^{(k)}) \times (\partial \mathbf{f}(\mathbf{X}\mathbf{n}) / \partial \mathbf{u}^{(k)})^{\mathrm{T}} \right\}$$
(7)

 $D[\mathbf{H}_{u}^{(k)}]$ は $\mathbf{H}_{u}^{(k)}$ から対角成分のみを抽出したものであるの で $\mathbf{H}_{u}^{(k)}$ の算出が完了すれば容易に算出可能であるが、両者を 加算した $\mathbf{H}_{u}^{(k)} + cD[\mathbf{H}_{u}^{(k)}]$ に対して逆行列を求める。この逆 行列の算出も容易ではなく、やなり演算負荷の高いGauss-Jordan法等の計算手法によって連立方程式を解く必要がある。 また、 $\nabla_{u} \mathbf{J}^{(k)}$ は勾配であり、計算式は次式(8)で表され、これ も偏微分を含む要素数11のベクトルである。

$$\nabla_{\mathbf{u}} \mathbf{J}^{(k)} = \sum_{n=1}^{N} \left\{ (\mathbf{Yn} - \mathbf{f}(\mathbf{Xn})) \times (\partial \mathbf{f}(\mathbf{Xn}) / \partial \mathbf{u}^{(k)}) \right\}$$
(8)

つまり1回の解の更新のために、11×11の要素の変微分計 算値を取得したデータの数Nだけ行なって足し合わせ、最終的 に足し合わされた11×11の行列に対して逆行列計算し、更に 以上の計算を解が最適値に収束するまで繰り返すのである。以 上のように Levenberg-Marquardt法は製造コスト及び製品サ イズに制約のある車載センサへ実装するには、相当過酷な計算 であると言える。

一方, Levenberg-Marquardt法と同様の最適係数の推定に 適用可能で、はるかに負荷の少ない演算手法としてカルマン・ フィルタ演算が知られている。このカルマン・フィルタ演算は, ハンガリー系アメリカ人ルドルフ・カルマン氏によって提唱さ れ、アポロ計画においてロケットの軌道計算に用いられ、アポ ロ11号の月面着陸成功に貢献したことで有名な技術である。 現在は飛行機の自動航行。カーナビゲーションの基礎技術とし て広く用いられている。当初ルドルフ・カルマン氏が提唱した フィルタ理論は線形システムにのみ適用可能なもの(線形カル マン・フィルタ)で、指数関数のような非線形な系には用いる ことの出来ないものであった。古河電工時報120号では指数関 数のべき乗係数は別個に算出でき, 関数Fitting中では定数と して扱えるものと仮定し単純化することによって、線形カルマ ン・フィルタが適用できる形にして試行を行なった。だが、同 フィルタはアポロ計画で活用される段階で、NASAのスタン リー・シュミット氏の手によって非線形システムに適用可能な 拡張カルマン・フィルタに改良され、今日ではより一般的に用 いられている。そこで今回はこの拡張カルマン・フィルタを用 いて高次指数関数の全ての係数を最適化することを試みた。

拡張カルマン・フィルタの一般式を下記に示す。

-期先予測:

$$\hat{x}_{n}^{-} = f(\hat{x}_{n-1}^{+}, \hat{u}_{n-1}^{+})$$

 $\Sigma_{\hat{x},n}^{-} = A_{n}\Sigma_{\hat{x},n-1}^{+}A_{n}^{T} + \Sigma_{n}$
(9)

ヤコビ行列計算:

$$\begin{array}{c}
A_n = \frac{\partial f}{\partial \hat{x}} \Big|_{\hat{x}_{n-1}^+} \\
C_n = \frac{\partial h}{\partial \hat{x}} \Big|_{\hat{x}_n^-}
\end{array}$$
(10)

フィルタリング計算:

$$\Sigma_{\vec{x},n}^{-} = A_{n-1}\Sigma_{\vec{x},n-1}^{+}A_{n-1}^{T} + \Sigma_{w}$$

$$L_{n} = \Sigma_{\vec{x},n}^{-}C_{n}^{T}[C_{n}\Sigma_{\vec{x},n}^{-}C_{n}^{T} + \Sigma_{v}]^{-1}$$

$$\hat{x}_{n}^{+} = \hat{x}_{n}^{-} + L_{n}[y_{n} - h(\hat{x}_{n}^{-}, 0)]$$

$$\Sigma_{\vec{x},n}^{+} = [1 - L_{n}C_{n}]\Sigma_{\vec{x},n}^{-}$$

$$\hat{x} : 狀態ベク \land \mu$$

$$y : 観測値$$

$$A : 時間発展モデルのヤコビ行列$$

$$(11)$$

 C_n :観測モデルのヤコビ行列 $\Sigma_{\hat{x},n}$:共分散行列 L_n :カルマン・ゲイン Σ_w :システムノイズ

- Σ_v :観測ノイズ
- u_n :入力ベクトル

この演算の趣旨は、観測値 y_n が状態ベクトル x_n によって式 (12)で表され、且つ状態ベクトル x_n が式(13)のように状態空 間表現されるとき、

$y_{\rm n} = h (x_{\rm n})$	(12)
$x_{\rm n} = f(x_{\rm n-1})$	(13)

式(9)により一期先予測を行い,観測を進めるに従いより最 適な予測となるように式(10),(11)によりフィルタリング(= 状態ベクトルの最適化)を進めていくものである。

計算開始に先立ち初期値の設定が必要である点は最小二乗法 と同様であるが,両者の最大の違いは最小二乗演算ではまず所 定のNヶの観測データを揃え,それら全てをバッファした時 点から最適化がスタートするのに対し,カルマン・フィルタで は観測を進める都度最適化を進める点である。つまりカルマン・ フィルタは原則kの繰り返しは必要なく,1~Nまでの観測デー タのバッファを必要としない。つまりNの制限を受けない無限 応答フィルタであるということである。

演算負荷の比較を行なう場合,最小二乗法の演算負荷は収束 までの繰り返し回数kによって大きく異なるため,厳密な比較 はできないが,仮に30~50回の繰り返しが必要であったと仮 定した場合,もし最小二乗法での観測数と同じ1~Nまでの一 通りの学習で最適化が完了した場合は,2桁程度の演算負荷低 減が期待できる。

当然最小二乗法の方が優れている面もあり,より確実に最適 解に到達することができるため,信頼性・ロバスト性において は最小二乗法の方が優れている。

しかし,もしカルマン・フィルタで同等精度の計算が実現で きた場合は,上記のように大幅な計算負荷の低減が見込める。

5. 指数関数 Fitting へのカルマン・フィルタ応用

最小二乗演算も同様であるが,目的の指数関数Fittingに拡 張カルマン・フィルタを適用するに当たっては,まず連続関数 の式(3)を,式(14)のようにサンプリング間隔(観測間隔)dt を用いて離散時間表現に書き直す。

$$f(n) = Y0 + A1 \cdot \exp(-dt \cdot n/T1) + A2 \cdot \exp(-dt \cdot n/T2) + A3 \cdot \exp(-dt \cdot n/T3) + A4 \cdot \exp(-dt \cdot n/T4) + A5 \cdot \exp(-dt \cdot n/T5)$$
(14)

計算に都合の良い状態ベクトルxnの設定として,

$$\begin{split} x_n^{\rm T} &= (\text{x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11}) \\ &= (\text{A1, A2, A3, A4, A5, } \exp{(-\text{dt/T1, })} \\ &\exp{(-\text{dt/T2})}, \ \exp{(-\text{dt/T3})}, \ \exp{(-\text{dt/T4})}, \\ &\exp{(-\text{dt/T5})}, \ \text{Y0}) \end{split}$$

とした。これにより、本検討では入力は存在しないので x_n の一期先予測は、

$$\hat{x}_{n}^{-} = f(\hat{x}_{n-1}^{+}) = \hat{x}_{n-1}^{+} \tag{16}$$

と大変簡略化でき、大幅な計算負荷の低減が可能となる。こ のとき観測値y_nは次式 (17) で表現できる。

$$\begin{aligned} \hat{y}_{n}^{-} &= h(\hat{x}_{n1}^{-})_{n} \\ &= (\hat{x}_{n1}^{-} \times \hat{x} \hat{6}_{n}^{-n} + \hat{x} 2_{n1}^{-} \times \hat{x} 7_{n1}^{-n} + \hat{x} 3_{n1}^{-} \times \hat{x} 8_{n1}^{-n} \\ &+ \hat{x} 4_{n1}^{-} \times \hat{x} 9_{n1}^{-n} + \hat{x} 5_{n1}^{-} \times \hat{x} 10_{n1}^{-n} + \hat{x} 11_{n1}^{-}) \end{aligned}$$
(17)

以上の策定式の基で,拡張カルマン・フィルタによる指数関数Fittingを行ない,同一条件でのLevenberg-Marquardt法最小二乗計算と比較することによって,拡張カルマン・フィルタの有用性の検証を試みた。

6. 最小二乗法とカルマン・フィルタ演算の結果比較

今回の最小二乗法とカルマン・フィルタ演算の比較検証を行 なうに当たっては、図4のdt = 20秒, N = 901 (トータル18000 秒 (= 5時間))の分極データを用いることとした。

図4 検討に用いた分極緩和挙動データ Relaxation data for trial.

比較の基準となる最小二乗法はLevenberg - Marquardt法 を実装した市販データ解析ソフトウェアOriginPro8.5Jを用い た。OriginPro8.5Jによる学習結果を**表1**に示す。

$\overline{\ }$	A1	A2	A3	A4	A5	T1	T2	Т3	T4	T5	Y0
最適化 係数	0.18237	0.4074	0.58806	0.34749	0.36972	55.83597	352.1912	1985.511	1985.694	11750.23	13.07268

表1 最小二乗法で求めた5次指数関数の最適係数 Result of lest square fitting.

拡張カルマン・フィルタ演算の実行にはExcel及びVBAマク ロ・プログラムを用いて自作したツールを用いた。計算結果に 対して初期値依存を持つのは最小二乗法,カルマン・フィルタ 共通である。今回の検討では初期値として,A1 = 0.3, A2 = 0.3, A3 = 0.3, A4 = 0.3, A5 = 0.3, T1 = 10, T2 = 100, T3 = 100, T4 = 1000, T5 = 10000, Y0 = 13.5を与えることとした。 まず,正攻法としてn = 1から開始してn = 901までの一通り の観測での計算結果を**表2**に示す。

表2 カルマン・フィルタで求めた5次指数関数最適係数 Result of Kalman-filter without iteration.

\geq	A1	A2	A3	A4	A5	T1	Т2	Т3	Τ4	Т5	Y0
最適化 係数	0.243151	0.537924	0.477655	0.551855	0.125053	63.86299	423.646	4190.568	5308.926	6181.159	13.12579

上記表1と表2を見比べて,必ずしも同様の結果が得られた とは言い難い。観測が進むに従って関数係数の最適化がどのよ うに進んでいるかを見るために安定OCVに対応する係数であ るY0の変化を図5に示す。

図5より,残念ながらn=1~901の5時間の観測ではY0は まだ値が変化していく過程であり,完全に収束しきっていない ことが分かる。当然,より長時間の学習を行なえば収束に向かっ ていくが,5時間の観測は車両で安定的に確保できる時間とし ては限界に近く,本来の目的である短時間での安定OCV推定 という観点から言えばこれ以上長時間の観測は現実的ではな い。問題解決に繋がる手法を求めて調査を行った結果,建築分 野における検討で,杭の急速載荷試験における地盤の完全弾塑 性バネ近似モデルの最適化検討で,最後のN番目のフィルタリ ング終了後,得られた最適値を初期値に用いて始めの観測値に 戻り,最小二乗法のように繰り返し計算を行なう取り組み例⁵⁾ を見出した。この方法では,Nヶ観測データのバッファが必要 となり,カルマン・フィルタ演算の本来の特長である無限応答 フィルタとしての特徴を殺すことになる。また,kの繰り返し に伴い演算負荷も大幅に増すが,今回はカルマン・フィルタ演 算を用いて目的の関数Fittingが行なえるどうかの見極めを最 重要と考え,同様の計算を試みることとした。また前記検討例 では最初の観測点に戻る繰り返しに際し,共分散行列を20倍す る手法が取られているが,本検討でもそれに習った。検討結果 を,Y0の計算繰り返しに従った変化として図6に示す。

図6 カルマン・フィルタ演算を繰り返したときのY0推移 Optimization of Y0 parameter through iteration.

図6の通り、70~80回の繰り返しを行なうことによってYO の値は収束した。しかしながら、カルマン・フィルタの無限応 答フィルタとしての特長を殺し、しかも70~80回も繰り返し を行うのでは演算負荷低減の効果は殆ど無くなってしまう。

更なる改善手法を模索して考察を行い、拡張カルマン・フィ ルタにおける離散時間間隔のサンプリグにおける線形近似の影 響について検討を行なった。拡張カルマン・フィルタにおける 線形近似のイメージを図7に示す。

図7 直線近時で発生する誤差のイメージ Image of liner simplification for non-liner system.

一般的工学分野において広く用いられているが、非線形な系 であっても十分微小な時間dtでの挙動を表現する場合、図7の ような線形近似(1次のTaylor展開近似)が可能であり、拡張 カルマン・フィルタもこれを用いている。つまり拡張カルマン・ フィルタは上記近似が成り立つ十分短いサンプリング間隔にお いてのみ成り立つ計算手法である。従ってサンプリング間隔を 短くすればするほど線形近似の誤差は低減されるが、当然観測 点の数が増えるので計算負荷が増大し、やはり今回の趣旨と逆 行してしまう。一次指数関数X(n) = exp(-dt·n/T0)を例に、 サンプリング間隔と発生する誤差の程度を**表3**に示す。

表3 指数関数における直線近時誤差 Error caused by liner simplification.

	dt								
	TO	T0/2	T0/5	T0/10					
誤差	$0.37 \times X(n)$	$0.107 \times X(n)$	$0.019 \times X(n)$	$0.005 \times X(n)$					

表3に示す通り指数関数の線形近似誤差はべき乗係数に対 する比率で一意に算出可能である。検討でのサンプリング間 隔dtは20秒である。一方表1の最適化係数で最も小さいべき 乗係数T1は55.83597であり,上記3に従った表現ではdt = T1/2.791799となり,10%近い誤差が生じることになる。カル マン・フィルタの特長は誤差の影響を考慮し,その分布をガウ ス分布に従うとの前提で構築されているが,今回の場合は絶対 値が大きい上に上記の誤差はガウス分布には従わない。しかし, 一方で今回の場合は上記のようにべき乗係数から発生する誤差 を計算することができる。そこで計算収束性改善のための試み として,この学習過程のべき乗係数からこの誤差を予測計算し, この影響分を観測ノイズにて減算することで収束性の改善が図 れるのではないかと考えた。

更に上記の問題とは別に,前記表1の最小二乗法の学習結果 でT3とT4がほぼ同じ値となっており,今回用いた5時間の データでは,5次指数関数では項数過多でオーバー・フィット に陥っていることが示唆された。併せて項数を減らして4次指 数関数に変更した。

上述の2点の改良を加えて再計算を行なった結果を図8及び 表4に示す。

図8 改善を加えたカルマン・フィルタ演算の繰り返し結果 Optimization of Y0 in modified calculation.

表4 最小二乗法とカルマン・フィルタの係数最適化結果比較 Comparison of fitted coefficients of exponential function.

	A1	A2	A3	A4	T1	T2	Т3	Τ4	Y0
最小二乗法	0.18237	0.4076	0.93555	0.36972	55.83597	352.1912	1985.579	11750.23	13.07268
カルマン フィルタ	0.304729	0.456292	0.950762	0.381907	31.15547	302.3189	1909.384	10775.69	13.08112

図8に示す通り、20回程度の計算繰り返しによってY0の学 習値はほぼ収束しており、図6と比較して大幅な繰り返し回数 の低減効果が得られた。この程度の繰り返しであれば、最小二 乗法に比べて有意な演算負荷低減が得られるものと期待でき る。また、表4に示す通り、各係数の学習値そのものも最小二 乗法の計算結果とほぼ一致する結果が得られており、最適化値 の値としてもカルマン・フィルタ演算の有用性が確認されたと 考える。

7. おわりに

本報告では純粋に関数Fittingのための一つの数学的手法と して拡張カルマン・フィルタの有効性を確認し、若干の使いこ なしの工夫・改良を加えることで有効なツールとして機能する ことを示した。当然今回の検討は最終的なものではなく、まだ 改善・最適化すべき点が多々存在すると考えている。

これは最小二乗法演算も同様であり,演算負荷のみならず計 算結果の安定性の観点も考慮した上で総合的に最適な手法を選 択する必要がある。

また,最小二乗法,カルマン・フィルタ双方における課題と して,計算を開始する際に設定する解の初期値の計算負荷・安 定性への依存性があり,当然最適解に近いほど有利である。今 回の検討では初期値は完全に固定した上で行なっていたが,実 際のアルゴリズムでは非常に重要な課題となる。

更に, 関数Fitting, 或いは係数最適化のためのツールは, 多くの研究者が日々研究を進めており,多くの手法が考案・提 案されている。理想的なアルゴリズム構築のためには広くこれ らの技術を吸収し,取り入れていくことも重要と考える。

参考文献

- 1) 岩根典靖:鉛バッテリ状態検知センサ,古河電工時報120号.
- 2) 金谷健一:これなら分かる最適化数学,共立出版株式会社.
- 3) 片山徹:新版応用カルマンフィルタ,朝倉書店.
- (正),金村,益田,渡辺(正義):電気化学,基礎科学コース, 丸善株式会社.
- 5) 麻生稔彦,新巻真二,烏野清,曾田忠義,落合英俊:杭の急速 載荷試験への拡張カルマンフィルターの適用性に関する検討, 土木学術論文集 No.673/Ⅲ-54, 133-141.