新材料・新製品開発のための先端解析技術

Advanced Analysis Technology for New Material and Product Development

〈概要〉

電子顕微鏡, 放射光, 表面分析の先端解析技術を様々な新材料・デバイスに活用した事例を紹介する。 光通信用半導体レーザの解析に,電子線ホログラフィ,DPC-STEMの電子顕微鏡技術を活用した。 気泡エナメル巻線の解析には,FIB-SEMによる3次元解析法を活用した。超電導線材と銅合金の解 析には,SPring-8においてSAXS法を用いた。AuSnはんだの解析には,HAXPESの表面分析手法を 活用した。

1. はじめに

古河電工は多岐にわたる製品群を有し、フォトニクス、ポリ マー、メタル、高周波エレクトロニクスをコア技術として次世 代事業の育成を図っている。その中で、フォトニクス分野では 光ファイバ、半導体レーザなどの製品があり、ポリマー技術の 応用では半導体用テープ、発泡製品などの様々な製品がある。 メタルは銅合金、無酸素銅、メモリーディスク用アルミブラン ク材などが代表的である。

実際の新製品開発の現場では、製品を形作っている材料を理 解し制御することが重要である。例えば半導体レーザはGaAs, InPなどの化合物半導体を、メタル製品は銅、アルミニウムを、 半導体用テープは粘着剤を理解し制御することにより所望の特 性を得ることができる。

それぞれの材料を理解するために,古河電工の解析技術セン ターでは研究開発中の製品や工場で製造している製品につい て,様々な解析装置を用いて材料解析を行っている。図1に解 析技術センターの役割を示す。研究開発中の製品では,新材料 の機能発現や特性のメカニズム解析を行い新製品の設計指針に 活用している。また工場でトラブルが発生した場合,材料解析 の観点から直ちに原因の究明を図り,解決の支援をしている。 しかしながら、近年先端計測・分析装置は高価格となり、網 羅的に装置を保有することは困難である。保有装置で解析が難 しい場合は、大学の最先端電子顕微鏡や、SPring-8などの放射 光施設を利用して製品の解析を行う。最先端の計測・分析装置 や解析技術を有する大学・公的研究機関との共同研究や、外部 の研究施設利用を通じて確かな材料解析を行い、サイエンスに 裏付けられた製品をお客様に提供することが解析技術センター の重要な役割である。

これまで多くの研究機関と共同研究や装置利用により,最先 端の材料解析技術を新材料・新製品開発に応用してきた。本稿 で示す電子線ホログラフィおよびDPC(微分位相コントラス ト:Differential Phase Contrast)-STEM(走査型透過電子顕微 鏡:Scanning Transmission Electron Microscopy)による半導 体解析は、それぞれJFCC(ファインセラミックスセンター)お よび東京大学との共同研究である。また、pn接合の精密解析 は大阪大学と共同で実施した。SPring-8を活用したSAXS(小 角X線散乱:Small Angle X-ray Scaterring)による銅合金と超 電導線材の解析は、北海道大学、日本原子力研究開発機構、京 都大学との研究成果である。

また今日,大学や公共機関の研究施設や分析装置は民間企業 が共用しやすい体制が整えられており,当社も多くの装置を利

- *5 戦略本部 人事部
- *6 グローバルマーケティングセールス部門 グループマーケティング統括部 市場開拓部

^{*1} 研究開発本部 先端技術研究所

^{*2} 研究開発本部 自動車エレクトロニクス研究所

^{*3} 古河ファイテルオプティカルデバイス(株)

^{*4} 戦略本部 経営企画部

^{*7} 一般財団法人ファインセラミックスセンター

^{*8} 大阪大学

^{*9} 東京大学

^{*10} 日本原子力研究開発機構

^{*11} 北海道大学

用し様々な材料解析に活用している。放射光施設は主に SPring-8, あいちシンクロトロンを活用している。中性子を用 いた解析ではJ-PARC (Japan Proton Accelerator Research Complex)を利用している。先端電子顕微鏡や表面分析は, JFCC, 東京大学,名古屋大学の保有装置を定期的に活用して いる。

本稿では数多くの新材料・新製品解析の中から,先端解析技 術を用いた応用事例の一部について紹介する。

2. 電子顕微鏡を用いた製品解析

電子顕微鏡は光より波長の短い電子線を用いて,数千〜数 百万倍に拡大して製品を観察できる顕微鏡である。SEM(走査 型電子顕微鏡:Scanning Electron Microscopy)は試料の表面を 観察し,TEM(透過型電子顕微鏡法:Transmission Electron Microscopy)は試料の内部を高い倍率で観察することができ, これらを目的に応じて使い分ける。

本節ではTEMの研究事例として電子線ホログラフィと

DPC-STEM法を紹介し, SEMの事例としてFIB(集束イオン ビーム:Focused Ion Beam)を組み合わせた3次元解析の例を 紹介する。

2.1 電子線ホログラフィによる半導体pn接合の精密解析

TEMの一手法である電子線ホログラフィによる半導体中の 電位観察は、当初Si半導体で研究が進んだ^{1)~3)}。化合物半導 体でも応用すべくJFCCと当社の共同研究を進め、2006年に GaAsやInPで観察に成功し⁴⁾、今日では半導体レーザなどの デバイス観察に応用されている⁵⁾。研究当初、数千倍~数万倍 の倍率による観察研究が中心であった。さらに高い倍率で半導 体の電位分布を観察するには、従来の電子線ホログラフィ法で は空間分解能が不十分であることから、ダブルバイプリズムに よる位相シフト法を活用した。この手法を用いて、GaAsのpn 接合における高分解能電位分布観察に成功した。

図2に電子線ホログラフィによる位相像を示す。試料はGaAs であり,p型半導体とn型半導体のドーパント濃度はそれぞれ 1×10¹⁹ cm⁻³である。このドーパント濃度から予想される空乏 層幅は約20 nmである。TEMはJFCC保有の日立HF-3300EH を用い、ダブルバイプリズム条件で観察し位相シフト法で位相 を再生した。図2(a)に示す位相像のように、明瞭にpn接合で コントラスト差が表れている。枠で囲った部分について、図2 (b)に示すように位相プロファイルを作成した。また、ドーパ ント濃度から想定される電位分布について同じグラフに表記し た。この二つのプロファイルはほぼ一致していることから、電 子線ホログラフィを用いて20 nm幅の空乏層を有するpn接合 中の電位変化を高空間分解能で観察できていることが分かる。

 図2 位相シフト電子線ホログラフィを用いたGaA半導体の pn接合の精密解析

 (a) pn接合の位相像(b) pn接合の位相プロファイル
 Precise analysis of GaAs p-n junction with phaseshifting electron holography.
 (a) Phase image and (b) phase profile across the p-n junction.

この結果をふまえて, pn接合に電圧を加え電位と電場が変化 する様子を観察することを試みた。化合物半導体に電圧を加え るには接触抵抗の小さい電極を半導体表面に形成する必要があ り,電極作製には当社の半導体レーザの製造プロセスを用いた。

電場プロファイルの解析結果を図3(a)に示す。電圧を-0.3 ~0.5 Vで変化させ、それに伴うpn接合での電場プロファイル の変化を捉えることに成功した。さらに電圧変化に伴う空乏層 幅の解析結果を図3(b)に示す。これらの結果は理論から予想 される結果とほぼ一致しており、実験が的確に行われたことを 示している⁶⁾。このように電子線ホログラフィを用いれば、数 nmの高い空間分解能で直接的に電位や電場を可視化でき、新 半導体デバイス開発に活用可能である。

図3 電子線ホログラフィを用いた 電圧印可に伴うpn接合の 電場計測

(a) pn 接合の電場変化と(b) 空乏層幅変化
Precise measurement of electric field across GaAs p-n junction by in situ biasing and electron holography.
(a) Change in electric field profiles and (b) depletion layer width across p-n junctions.

2.2 DPC法による半導体レーザの解析

今日,STEMの高度化により電子ビームを極限まで集束させることができるようになり,原子の可視化は日常的な分析となっている。STEMの一手法であるDPC法も当初は原子分解 能観察で大きな進展があった⁷⁾。東京大学と当社はDPC-STEMで半導体中の電場観察に取り組むべく,GaAsのpn接合 観察の研究を進めた。日本電子(株)の協力によりpn接合観察 に最適な観察条件を見出しpn接合の観察に成功し⁸⁾,今日で は,STEMの一手法としては一般的な手法となりつつある。

図4(a)にDPC法を用いて観察したGaAsのpn接合のDPC-STEM像を示す。TEMは、東京大学保有の収差補正器が付属し た日本電子(株)の2100Fである。カメラ長を140m、ビーム径 を12 nmとした。DPC-STEM像の中心にpn接合を明瞭に観察 することができる。矢印で示す場所はドーパント濃度が変化し ている界面であり、僅かな電位変化も捉えることができている。

図4 DPC-STEMによるpn接合と半導体レーザの観察 (a) p-n接合を含むGaAs半導体のDPC-STEM像(b)半導体レーザのADF-STEM像と(c) DPC-STEM像 Observation by DPC-STEM on p-n junction and semiconductor laser diode. (a) DPC-STEM image of p-n junction region in GaAs. (b) ADF-STEM and (c) DPC-STEM image of semiconductor laser diode.

本手法は2次元形状を有するデバイスも観察可能である。 図4(b),(c)は光通信用の半導体レーザの部位の一部である。 図4(b)は一般的な手法であるADF(Annular Dark Field) -STEM法による像であり,p型半導体とn型半導体の界面を観 察することができない。DPC-STEMで観察した結果を図4(c) に示す。ADF-STEM像では観察できなかった2次元のpn接合 を観察することができている。なお,このデバイスは特性不良 品でありpn接合の形状が設計通りの形ではなかった⁵⁾。この ようにDPC-STEMを用いてpn接合を観察することにより,デ バイス製品の不具合解明が可能となる。

なお、ここで紹介したDPC-STEM、電子線ホログラフィ以外 にも電子顕微鏡の半導体観察技術は、現在も進展しており新し い電位・電場観察手法として、回折顕微法^{9),10)},4D-STEM¹¹⁾, Shadow法¹²⁾などの研究が進められている。これらを相補的に 活用することができれば、デバイス解析をさらに詳細に進める ことが可能である。

2.3 FIB-SEMによる気泡エナメル巻線の3次元解析

ミクロンオーダー以下の3次元解析手法としては、X線トモ グラフィ、FIB-SEMを用いた3次元解析法、TEMトモグラ フィ、3次元アトムプローブ法が代表的である。それぞれ観察 試料の大きさと空間分解能が異なり、観察する材料の目的に応 じて選択する必要がある。

本節では、数µmの大きさの気泡が入ったエナメル巻線のエ ナメル部分のFIB-SEMによる3次元構造解析について紹介す る。

気泡入りエナメル巻線は、気泡の体積比率とサイズを制御す ることで巻線の部分放電開始電圧を向上でき、モータの小型・ 高出力化に貢献できる¹³⁾。気泡の形状分布を把握する手段と してFIBとSEMを用いた三次元撮影を行った。FIBは集束し たイオンビームで断面をnmオーダーの高精度で加工すること ができ、さらに一度加工した断面に対して再度イオンビームを 照射することで、新たな断面を削り出すことができる。この特 徴を活用して**図5(a)**のように、FIBによる断面出しと、SEM 観察を周期的に繰り返すことで、材料の3次元的な情報を取得 することが可能である。

気泡同士はお互いに近接している場合0.1 μmより薄い壁で 隔てられていることがある。そのため気泡入りエナメルの観察 において,FIB-SEMに搭載されている電子顕微鏡の性能が重 要になる。そこで,名古屋大学保有のFIBとSEMが直交配置 された直交型FIB-SEMと呼ばれる装置MI4000Lを利用した。 直交型FIB-SEMでは500枚以上の断面SEM撮影を行ってもほ とんど視野が動かないため、より奥行方向に広範囲の3次元像 を撮影することが可能である。搭載されているSEMは3 keV 以下の低加速電圧の観察条件においても、10 nm以下の空間分 解能を有しており気泡入りエナメルの観察は十分な性能となっ ている。

SEM像の一例を図5(b)に示す。気泡の大きさは数µmであ り様々な形状や大きさの気泡が観察できるが、一断面の観察で は奥行方向の情報を得ることができず正確な情報を得ることは できない。そこで3次元観察を行うため、FIBによる断面加工 を100 nm間隔で行い500枚のSEM観察を行った。奥行方向に 対して50 µmの範囲で連続した断面SEM像から得た輝度情報 をボクセルと呼ばれる3次元画素に割り当てて合成すると、 図5(c)のような3次元像を得ることができ気泡形状の立体化 に成功した。

この3次元解析結果を活用することにより,巻線の部分放電 開始電圧の向上を図りモータの技術革新に寄与することができ る。

図5 FIB-SEMによる気泡エナメル巻線の3次元解析 (a) FIB-SEM解析の模式図(b) 気泡エナメル巻線の SEM像と(c) 3次元像構築像 FIB-SEM 3D analysis of winding wires with micro cellular coating. (a) Schematic diagram of FIB-SEM analysis (b) Cross section SEM image and (c) 3D reconstruction of micro cellular coating.

3. 放射光を用いた製品解析

放射光はほぼ光速まで加速した荷電粒子が磁場で曲げられた 時に放出する強力な電磁波であり、高輝度、偏向性、平行性、 パルス光、エネルギーの選択性といった特長がある。これらの 放射光の特長を活用し,時分割測定や特定の元素の吸収端付近のX線を用いるXAFS(X線吸収微細構造:X-ray Absorption Fine Structure)分析などが材料分析で活用されている。

本節ではこれらの特長を活用した異常小角X線散乱法,時分割SAXS測定,HAXPESの事例について紹介する。

3.1 異常小角X線散乱法による超電導中の人工ピンの解析

超電導物質は極低温において電気抵抗がゼロであることか ら、電力のロスがないため省電力社会に貢献することができ、 高圧ケーブルなどへの応用が期待される。

高い臨界電流密度Jcの線材を開発するためには,磁束量子の制御が必要である。超電導線材をコイルにして強力磁場発生 装置として用いる場合には,線材中に強い磁場が加わる。超電 導材料に磁場が印加されると磁束量子が形成されるが,電流を 流すことにより磁束量子がローレンツ力で動き熱を発生させ抵 抗を生じる。そのため,磁束量子を適当な常伝導相にピニング させる必要がある。そこで,超電導線材に人工的にピニングサ イトを導入する人工ピンの開発が2004年頃から進められ^{14),15)}, 薄膜の垂直方向に数nm径のロッド状の常電導部分を人工ピン として形成している¹⁶⁾。この人工ピンを設計通りに導入する ことができれば,高磁場中でも超電導状態を保つことができ強 力な磁場を発生するこができる。

これらの背景から、人工ピンを設計通りに作製されているか 否かの材料解析が必須となっている。この人工ピンについては、 図6(a)のようにTEMで観察する解析手法が一般的であるが、 観察領域が数µm範囲と小さく線材全体に対するサイズや分布 の定量評価には不十分である。そのため、高精度な定量評価法 を確立すべく、小角散乱法を用いたナノロッド人工ピン評価を 行った。

小角散乱法はX線や中性子を材料に照射し,10度以下の小 さな角度で散乱されるX線・中性子を解析することにより微細 構造の平均情報を取得する手法である。ナノ粒子や材料に含ま れる第二相の平均サイズや配向性の情報が得られ,TEMと相 補的に用いることが材料解析をする上で有効である。

超電導線材の人工ピンにSAXSを応用した例はAuなど重い原 子を含む人工ピンがある¹⁷⁾が、人工ピンとして実用的なBaZrO₃ は超電導相の(Gd,Y)BaCuOと電子密度差が小さいためX線のコ ントラストが弱く、十分な散乱強度が得られない。そこで、Zrを 対象としたASAXS(異常小角X線散乱:Anomalous Small-Angle X-ray Scattering)を用いて人工ピンのサイズや分散状態の定 量評価法の確立を目指した。ASAXSは特定元素の吸収端近傍 のエネルギー領域で発生する異常X線散乱現象を用いる手法 であり、小角散乱測定において散乱コントラストを変化させる ことができる。

ASAXS測定は、SPring-8のBL19B2に設置されたSAXS装置を利用した。図6(b)にZrを25%添加した(Gd, Y)₁Ba₂Cu₃O₇ 薄膜の異常小角X線散乱結果を示す。図中に示した記号の1が 17.885 keV、2が17.985 keV、3が17.990 keV、4が17.995 keV の測定結果である。Zr-K吸収端は17.998 keVである。図中矢 印で示したq=0.2-1.0 nm⁻¹付近にショルダーが観測され、超電 導相中に数10 nm程度のナノ構造が形成していることを確認 した。吸収端から十分に離れた1のプロファイルと比較して、 2、3、4は、q=0.3 nm⁻¹付近のピーク強度が増大している。こ

のことから、これらのピークはZrを含むBaZrO₃による人工ピン起因の散乱と考えられる。

次にZr添加量7.5%, 15%, 20%, 25%の試料について測定し, リダクションした結果を図6(c)に示す。この結果を用いて, ロッド径の見積もりをUnified fitで行った^{18), 19)}。図6(d)に示 すように, Zr濃度が高いほど径が大きくなる傾向であるが, 20%と25%の試料では有意差がない結果となった。

このようにASAXSを活用することにより,超電導相中の人 エピンを高精度に解析でき高臨界電流密度の超電導線材の開発 に寄与することができる。

3.2 小角 X線散乱による Cu-Ni-Si 合金析出物の

in-situ サイズ測定

近年,携帯端末やパーソナルコンピュータなどの電子機器の 小型軽量化や高性能化に伴い,それに使用される電子部品も小 型かつ高性能なものになっている。これら電子部品のコネクタ などの導通部に使用される銅合金への要求特性も高まっており, 端子の小型化による端子強度不足および導電性不足を防ぐため に,従来よりも高強度および高導電性の材料が望まれている。

これらの要求特性を満たす銅合金としてCu-Ni-Si 系合金が あり,図7(a)のTEM像に示すように、熱処理によりCu母相 中にNi-Si系化合物が析出物として微細分散することで強度が 向上することが知られている。析出強化機構を明らかにするに は析出物のサイズ分布や分散状態をより定量的に評価する必要 があるが、TEMによる観察では局所的情報に留まり不十分で ある。そこで平均情報が得られるSAXSにより、コルソン合金 の析出物のサイズ情報とそれらの成長過程に関する情報を得る ことを目的として、*in-situ* SAXS測定をした。

SAXS測定はBL19B2に設置されたSAXS装置を利用した。 X線のエネルギーとしては18 keVを選択し検出器は2次元位 置敏感型検出器 (PILATUS-2M)を用いた。時効熱処理には Instec社製の加熱ステージHS1300Gを用いた。測定条件は昇 温レート10℃/min,最高到達温度500℃とした。 図7 (b) に昇温中のプロファイルを示す。昇温過程において ショルダーはlow-q側に変化し、析出物は粗大化していること が分かる。図7 (c) に時効温度500℃における保持時間のプロ ファイル変化を示す。時間を追うごとに上記の散乱強度は増加

図7 Cu-Ni-Si 合金析出物の*in-situ* サイズ測定 (a) TEM像(b) 昇温中のプロファイル変化(c) 500℃に おける保持時間のプロファイル変化 Measurement of Cu - Ni - Si alloy precipitates size by *in-situ* SAXS. (a) TEM image(b) profile change during heating(c)

(a) TEM image (b) profile change during heating (c) profile change during isothermal holding time at 500 degrees.

し、ショルダーもlow-q側にシフトした。4時間経過した時点 でプロファイルの変化は飽和する様子はなく、さらに増加およ びlow-q側へのシフト傾向にある。

これらのデータの解析を詳細に進めることにより,核生成や 粒成長のメカニズムを明らかにすることができ,新しい銅合金 の開発指針の一助となる。

3.3 HAXPESによるAuSnはんだ酸化膜解析

XPS(X線光電子分光法:X-ray Photoelectron Spectroscopy) は、固体表面にX線を照射することにより放出される光電子を 検出し、表面の元素の種類と組成、化学結合状態などに関する 情報を得る表面分析法である。製品内で使われている部材の表 面状態は部材間の接合特性に大きく寄与するため、試料表面の 有機物汚染層や酸化膜層の膜厚や化学結合状態を分析すること は非常に重要である。

酸化膜厚の変化はArイオンスパッタを用いた深さ方向分析 で評価できるが、スパッタ面の化学結合状態や電子状態はス パッタイオンによるダメージを受け、本来分析したい材料の化 学結合状態や電子状態を変質させてしまう可能性がある。さら に、イオンスパッタを用いた深さ方向の分析は破壊分析である ため、不良品や故障品などの1点限りの試料の場合、再度同じ あるいは別の分析を行うことは非常に困難となる。

そこで、より深い内部の情報が検出できる照射X線のエネル ギーを大きくしたHAXPES(硬X線光電子分光法:Hard X-ray Photoelectron Spectroscopy)を用いると、非破壊で酸化膜厚 の評価や深さ方向分析を行なうことが可能となる。ここ10年 ほどで、SPring-8の放射光を利用したHAXPES実験が企業の 研究開発・製品開発に利用しやすい環境が整い^{20)~22)}、当社も BL46XUでHAXPES測定を行っている。

本節では、様々な製品の部材接合に用いられるAuSnはんだ の分析事例を紹介する。分析に用いた試料は異なるSn酸化膜 厚を持つ2条件のAuSnはんだ(試料AとBとする)であり、 XPSの深さ方向分析から得た酸化膜厚は試料Aが2 nm, 試料 Bが11 nmであった。

図8(a)にAuSnはんだ試料AとBの表面をXPSで測定して 得られたSn3dスペクトルを示す。XPS装置は当社保有の Refurbished ESCA5400MC(Physical Electronics社)を用いた。 入射X線は単色化AlKα線(1486.6 eV)で,脱出角は75°であ る。試料AはSn酸化膜とAuSnの2成分が検出されているが, 試料BはSn酸化膜成分のみ検出され下地のAuSn成分は検出 されなかった。このように金属表面上に存在する酸化膜厚は表 面敏感なXPSに対しては厚いため,非破壊での化学結合状態 分析や深さ方向分析が困難である場合が多い。

次に、AuSnはんだ試料AとBをHAXPESで測定して得られたSn3dスペクトルを図8(b)に示す。HAXPES測定はSPring-8のBL46XUで行った。入射X線のエネルギーは7939.0 eVで、 脱出角は80°である。HAXPES測定では試料Aだけではなく、 XPS測定でSn酸化膜しか検出されなかった試料BからもSn酸化膜とAuSnの2成分が検出された。

このことは深い内部の情報が得られるHAXPESは、従来の XPS測定では非破壊分析ができなかったAuSnはんだ上のSn 酸化膜の膜厚評価、化学結合状態分析および深さ方向分析が可 能になることを意味している。この技術を応用することにより、 様々な製品に使われている部材の接合メカニズムを解明するこ とが可能となる。

図8 HAXPESによるAuSnはんだの酸化膜解析 (a) XPSによる評価(b) HAXPESによる評価 Oxide film analysis of the AuSn solder surface by (a) XPS and (b) HAXPES.

4. おわりに

本稿で示したように様々な先端計測・分析装置と解析技術を 活用することにより,製品を構成する材料の本質を明らかにす ることができる。新材料・新製品開発の現場においては,材料 解析から得られる情報は,設計指針を定める上で重要である。 また,既存の製品でもトラブルの解明を行うに際し先端解析技 術が大きな役割を果たす場合もある。

今後も社会に受け入れられる信頼性の高い製品を提供するた めに,必要に応じて新しい解析技術の構築を進めていく。

謝辞

本研究の一部は、文部科学省先端研究基盤共用促進事業(共 用プラットフォーム形成支援プログラム)、文部科学省委託事 業ナノテクノロジープラットフォームにおける大学微細構造解 析プラットフォームの東京大学と名古屋大学の支援を受けて実 施した。また、一部の研究は、JSPS科研費JP26286049および JP26600042の助成を受けて行った。SPring-8の実験は、課題番 号 2016B1790、2014A1814、2014B1942、2015B1789、 2017B1803、2018B1655にて実施した。産業界の技術課題を解 決するために様々な最先端の研究設備と支援体制が整備され、 本稿で示したように当社でも大きな恩恵を受けており関係者の 皆様に感謝の意を表する。

参考文献

- M. R. McCartney, D. J. Smith, R. Hull, J. C. Bean, E. Voelkl and B. Frost: "Direct observation of potential distribution across Si/Si p-n junctions using off-axis electron holography", Appl.Phys. Lett., 65 (1994), 2603.
- 2) W. D. Rau, P. Schwander, F. H. Baumann, W. Höppner, and A. Ourmazd: "Two-Dimensional Mapping of the Electrostatic Potential in Transistors by Electron Holography", Phys. Rev. Lett., 82 (1999), 2614.
- Z. Wang, T. Hirayama, K. Sasaki, H. Saka and N. Kato: "Electron holographic characterization of electrostatic potential distributions in a transistor sample fabricated by focused ion beam", Appl. Phys. Lett., 80 (2002), 246.
- 4) H. Sasaki, K. Yamamoto, T. Hirayama, S. Ootomo, T. Matsuda, F. Iwase, R. Nakasaki and T. Ishii: "Mapping of dopant concentration in a GaAs semiconductor by off axis phaseshifting electron holography", Appl. Phys. Lett., 89 (2006), 244101.
- 5) 佐々木宏和,大友晋哉,湊龍一郎,吉田順自:"電子線ホログラ フィとローレンツ顕微鏡を用いた半導体レーザの解析",古河 電工時報,134 (2015),33.
- 6) S. Anada, K. Yamamoto, H. Sasaki, N. Shibata, Y. Hori, K. Kinugawa, A. Imamura and T. Hirayama: "Precise measurement of electric potential, field, and charge density profiles across a biased GaAs p-n tunnel junction by in situ phase-shifting electron holography", Journal of Applied Physics, 122 (2017), 225702.
- N. Shibata, S. D. Findlay, Y. Kohno, H. Sawada, Y. Kondo and Y. Ikuhara: "Differential phase-contrast microscopy at atomic resolution", Nature Physics, 8 (2012) 611.
- N. Shibata, S. D. Findlay, H. Sasaki, T. Matsumoto, H. Sawada, Y. Kohno, S. Otomo, R. Minato and Y. Ikuhara: "Imaging of built-in electric field at a p-n junction by scanning transmission electron microscopy", Scientific Reports, 5 (2015), 10040.
- J. Yamasaki, K. Ohta, S. Morishita and N. Tanaka: "Quantitative phase imaging of electron waves using selectedarea diffraction" Appl. Phys. Lett., 101 (2012), 234105.
- J. Yamasaki, K. Ohta, H. Sasaki and N. Tanaka: "Observation of electric field using electron diffractive imaging", 18th International Microscopy Congress, Prague, (2014).
- 11) R. Sagawa, H. Hashiguchi, H. Sasaki, R. Ritz, M. Simson, M. Huth, G. T. Martinez, P. D. Nellist and Y. Kondo: "Development of fast pixelated STEM detector and its applications for visualization of electromagnetic field and ptychographic reconstruction using 4D dataset", 19th International Microscopy Congress, Sydney, (2018).
- 12) K. Sasaki, H. Sasaki and S. Saito, "Differential Potential Distribution Observation in Transmission Electron Microscope with Conventional Thermal Electron Gun" Proceedings of Microscopy & Microanalysis 2018, 24 (Suppl 1) (2018), 26.
- 13) 武藤大介,池田佳祐,冨澤恵一,福田秀雄,小迫雅裕,匹田政幸: "気泡入りエナメル皮膜を適用した巻線の部分放電特性",古河 電工時報,138 (2019)
- 14) J. L. M. Driscoll, S. R. Foltyn, Q. X. Jia, H. Wang, A. Serquis, L. Civale, B. Maiorov, M. Hawley, M. P. Maley and D. E. Peterson: "Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7-x + BaZrO3", Nature Materials, 3 (2004) 439.
- 15) Y. Yamada, K. Takahashi, H. Kobayashi, M. Konishi, T. Watanabe, A. Ibi, T. Muroga, S. Miyata, T. Kato, T. Hirayama and Y. Shiohara: "Epitaxial nanostructure and defects effective for pinning in Y_uRE…Ba2Cu3O7 x coated

conductors", Appl. Phys. Lett. 87, (2005), 132502.

- 16) T. Kato, H. Sasaki, Y. Gotoh, Y. Sasaki, T. Hirayama, K. Takahashi, M. Konishi, H. Kobayashi, A. Ibi, T. Muroga, S. Miyata, T. Watanabe, Y. Yamada, T. Izumi and Y. Shiohara, "Nanostructural characterization of Y123 and Gd123 with BaZrO3 rods Fabricated by Pulsed-Laser Deposition" Physica C, 445-448, (2006), 628.
- 17) T. Horide, K. Matsumoto, H. Adachi, D. Takahara, K. Osamura, A. Ichinose, M. Mukaida, Y. Yoshida and S. Horii: "Evaluation of metallic nanoparticles in REBa2Cu3O7- δ (RE = Y, Gd) thin films by small angle X-ray scattering", Physica C, 445-448, (2006), 652
- 18) J. Ilavsky and P. R. Jemian: "Ultra-small-angle X-ray scattering at the Advanced Photon Source", J. Appl. Cryst. 42, (2009) 347.
- G. Beaucage: "Approximations Leading to a Unified Exponential Power-Law Approach to Small-Angle Scattering", J. Appl. Cryst., 28 (1995) 717.
- 20) K. Kobayashi, Y. Takata, T. Yamamoto, J.-J. Kim, H. Makino, K. Tamasaku, M. Yabashi, D. Miwa, T. Ishikawa, S. Shin and T. Yao: "Intrinsic Valence Band Study of Molecular-Beam-Epitaxy-Grown GaAs and GaN by High-Resolution Hard X-ray Photoemission Spectroscopy", Jpn. J. Appl. Phys., 43, (2004), L1029.
- Y. Saito, M. Nakamura, A. Kimura, K. Yamaguchi and M. Ito: "Characterization of SiNx/GaxInl-xAs Interface using Hard X-ray Photoemission Spectroscopy", Jpn. J. Appl. Phys., 46, (2007), 5771.
- 22) T. Doi, K. Kitamura, Y. Nishiyama, N. Otsuka, T. Kudo, M. Sato, E. Ikenaga, K. Kobayashi and T. Hashimoto: "Analysis of Cu segregation to oxide-metal interface of Ni-base alloy by HX-PES", Surf. Interface Anal., 40, (2008), 329.