超高Δ石英ガラス系平面光導波路の開発

Development of Ultra-High \(\Delta \) Silica-Based Planar Lightwave Circuit

高橋正典* Masanori Takahashi 内田泰芳* Yasuvoshi Uchida

山﨑慎太郎 Shintaro Yamasaki

長谷川淳一* Junichi Hasegawa

〈概要〉

光通信ネットワークにおいて,石英系平面光導波路 (planar lightwave circuit: PLC) 技術を利用し た光部品が多数実用化されている。高速,大容量伝送化を実現するために,次世代の光通信ネットワー クに使用されるPLCデバイスには小型化,低コスト化,高密度集積化が求められている。これらの 特性を実現するためにはPLCを構成するコアとクラッドの比屈折率差Δを高める必要がある。従来 使用されてきた、コアに添加するドーパントをGeO2から、より屈折率の高いZrO2に変更する事で 5%以上の Δ を有する超高 Δ PLC を実現した。本報告では ZrO_2 -Si O_2 超高 Δ PLC の低損失化,超高 Δ PLCによる超小型のコヒーレントミキサ、超高 Δ PLC とシングルモードファイバ (SMF) との低損失 接続技術の開発に関して報告する。

1. はじめに

光通信システムにおいて、石英系平面光回路(planar lightwave circuit: PLC) を使用したデバイスが多数実用化され、 広く商用展開されている。特にデジタルコヒーレント受信方式 を利用したDual-polarization quadrature phase-shift keying (DP-QPSK) 信号方式の100 Gbit/sの高速通信システムに導入 され、今後本格的に需要が増加すると考えられる、PLCを用 いたコヒーレントミキサに関する研究開発が行われている1)。 コヒーレントミキサを含めた、次世代のPLCデバイスには小 型化,低コスト化と同時に高密度集積化が求められる。さらに, 実際の製品に適用するためには上記の特性を満たすと同時に, 低伝搬損失, ファイバとの低接続損失が必要であり, 低偏波依 存性, 製造性, 信頼性に関しても考慮する必要がある。近年, 次世代導波路デバイスの研究開発が多数報告されており、代表 的なものとして,石英系導波路^{2),3)},InP系導波路⁴⁾,Si細線 導波路⁵⁾が検討されている。これらの材料はそれぞれ一長一短 がある。InP導波路、Si細線導波路はコアとクラッドの比屈折 率差 △ が大きい材料であるため、高密度集積化、チップサイズ の小型化には有利である。しかしながら、伝搬損失、ファイバ との接続損失が大きい点が問題となる。一方、石英系導波路は △が小さい材料であるため、高密度集積化、小型化が課題とな るが, 低伝搬損失, ファイバとの接続性に加え, 低偏波依存性, 優れた製造性を有している。このため、Δが大きくできる材料 が開発できれば、チップサイズの小型化が実現する。

本報告では次世代の導波路デバイスを実現するために最適な 特性を有する石英系PLCの開発に関して報告する。第2節では PLCを小型化するための超高△化の設計を示す。第3節では設 計した超高ΔPLCの作製工程について,第4節では超高ΔPLC の基本特性についてそれぞれ示す。第5節では超高ΔPLCによ り実現した小型のコヒーレントミキサの試作結果を示す。第6 節では超高 Δ PLC に最適化した構造を有するスポットサイズ コンバータ (spot size converter: SSC) を設計, 試作した結果 について報告する。

2. 超高Δ PLCの設計

通常のPLCはSi基板上に堆積したクラッド内部に埋め込ん だコアを光が伝搬する構造となっている。PLCのチップサイ ズは主に導波路の最小曲げ半径により決まる。最小曲げ半径を 小さくするためには△を高め、コアに光を強く閉じ込める必要 がある。

2.1 GeO₂-SiO₂ PLCの超高△化限界

高 Δ 化のためには GeO_2 の添加量を増やす必要があるが、 GeO₂の添加量を増やすとガラスの軟化点温度が下がり、熱膨 張係数 α が大きくなり、PLCの製造工程において火炎堆積法 (flame hydrolysis deposition: FHD) 等の高温プロセスで製造 性に問題が生じ、実用化を考慮したGeO₂-SiO₂ PLCでは2.5% OO(1000) の Δ が上限となる $^{6)}$ 。

2.2 超高 Δ化の目標設定

次世代PLCに期待される小型化、高密度集積化を実現する ための、△について検討した。まず△と導波路に許容される最 小曲げ半径の関係をシミュレーションにより明らかにした。本 シミュレーションではBPM法 (beam propagation method) に より、各Δにおいて異なる曲げ半径を有する導波路を伝搬した 際の伝搬損失を計算した。損失が0.01 dB増加する曲げ半径を 最小曲げ半径とした、計算結果を図1に示す。現行のPLCの多 くは1.5%以下のΔに設計されており、最小曲げ半径はおよそ 1500 μ m \sim 2000 μ m である。 GeO_2 -Si O_2 PLC の上限となる 2.5%

^{*} 研究開発本部 情報通信・エネルギー研究所

のΔの場合、最小曲げ半径はおよそ800 μmとなる。次世代の PLCデバイスに最適となる特性を実現するため、競合技術で あるInP等の半導体導波路⁷⁾と同程度となる500 μm以下の最 小曲げ半径を目標とした場合Δを5%以上に設定する必要があ る。

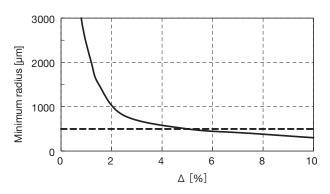


図 1 最小曲げ半径と△の関係 Relationships between Δ and minimum bending radius.

2.3 超高 Δ PLC を実現するためのドーパント選定

超高 △ PLC を実現するためのドーパント材料として GeO。よ りも屈折率が高く、熱膨張係数 α の小さい材料を選定の対象と した。各材料の特性を表1に示す $8^{1,9}$ 。候補となる材料はドー パントしてSiO₂ガラスに添加して使用するため、SiO₂と固溶 体を形成する、化学的親和性が高い材料が望ましい。これらの 材料の中で、SiO₂との親和性が高い材料はZrO₂とHfO₂(であ り、ZrO₂とHfO₂を比較すると、ZrO₂の方がより屈折率が高 いこと、Zr原料の価格が安く埋蔵量が豊富で入手性が良好で ある事¹⁰⁾からZrO₂をドーパントとして選定した。

超高 Δ PLCのドーパント検討 夷1 Characteristics of dopants for ultra-high Δ PLC.

Refractive index	a × 10-6	Affinity to SiO ₂
2.45	9.0	Poor
2.20	5.0	Poor
2.31	2.0	Poor
2.17	8.0	Good
2.02	6.5	Good
1.70	12.0	Good
1.45	_	_
	2.45 2.20 2.31 2.17 2.02 1.70	2.45 9.0 2.20 5.0 2.31 2.0 2.17 8.0 2.02 6.5 1.70 12.0

3. ZrO₂-SiO₂ PLCの作製工程の最適化

ZrO₂をドーパントとしたZrO₂-SiO₂ PLCを作製するため, まずSi基板上にSiO₂からなるアンダークラッドを堆積させ、 アンダークラッド上にZrO₂-SiO₂ガラスをスパッタ法により成 膜した。成膜後、1000℃以上の温度でアニール処理を行い、成 膜時に生じる欠陥を除去した。次にフォトリソグラフィーとド ライエッチングによりコアをパターンニングし、最後にオー バークラッドで埋め込みを行った。次項では、 ZrO_2 -Si O_2 PLC の伝搬損失を低減するために行った工程の最適化について示

3.1 ZrO₂-SiO₂ガラスのアニール処理

コア成膜直後にはガラスに酸素欠陥が存在し、欠陥による光 の吸収で伝搬損失が大きくなるため、酸素雰囲気中でアニール 処理を行い、酸素欠陥の除去を行った。ガラスの屈折率は光と ガラスを構成する電子との相互作用によって決まる。ガラスを イオンの集合体と考えれば、屈折率nは各イオンの分極率a. Nを単位体積内の分子数とすると、ローレンツ-ローレンツの 式から次式で表される。

$$\frac{-n^2 - 1}{n^2 + 2} = \frac{4\pi}{3} \sum_{j} N_j \tag{1}$$

(1) 式から、分極率の高いイオンが存在すれば屈折率が高く なる。そのため、酸素欠陥が存在するガラスは屈折率は高くな

 $2 CZrO_2-SiO_2$ ガラスの屈折率とアニール温度との関係を 示す。この結果から1000℃以上の温度でアニールする事で酸 素欠陥が除去できる事を示している。

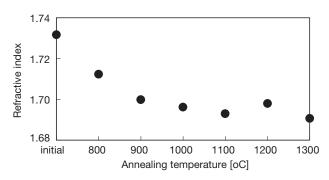
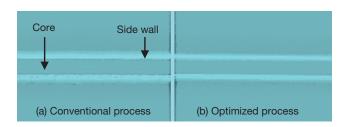



図2 ZrO2添加SiO2ガラスの屈折率とアニール温度の関係 Relationships between refractive index of ZrO₂-SiO₂ glass and annealing temperature.

3.2 ZrO₂添加ガラスのドライエッチング

PLCの伝搬損失の原因の一つに、コアのパターンをドライ エッチングにより形成する際に生じるコアの側壁荒れによる光 の散乱が挙げられる。図3にパターンニング後のコアの形状を 示す。PLCの製造プロセスではコアとなるガラス膜を成膜後、 フォトリソグラフィーとドライエッチングを用いてコアをパ ターンニングする。ZrOoは通常のPLCのコアのドーパントと して使用されているGeO2と比較して、ハロゲン系ガスを反応 ガスとして用いるプラズマエッチングでは反応生成物の蒸気圧 が低い¹¹⁾。ZrO₂は難エッチング材料でZr-O結合が強い¹¹⁾ため, 通常のPLCと同じプロセス条件で加工を行うと図3(a)に示す ように大きな側壁荒れが生じる。そこでZrO2添加SiO2ガラス の加工プロセスの最適化を行い、コアの側壁荒れを大幅に低減 する事に成功した。加工プロセス最適化後のコアを図3(b)に 示す。

ドライエッチング後のZrO2添加SiO2ガラスの写真 図3 Picture of the ZrO₂ - SiO₂ glass formed by dry etching.

4. ZrO₂-SiO₂ PLCの基本特性

第3節で示した工程によりZrO2-SiO2 PLC試作した。成膜し たZrO₂-SiO₂ガラスは1000℃以上の温度でアニール処理を行 い、最適化したプロセス条件でコアのパターンを形成した。試 作したZrO₂-SiO₂ PLCのΔは5.5%とし、コアサイズは3× 3 μmとした。本節で示す光学特性は全て波長1550 nmで測定 を行った。

4.1 ZrO₂-SiO₂ PLCの伝搬損失

図4に示す渦巻き状の回路を使用し、TE(transverseelectric)とTM (transverse-magnetic) 偏光で、長さの異なる 複数の回路の挿入損失を測定し、回路長に対する損失の増分を 伝搬損失として算出した。図5に最も回路長が短い回路の挿入 損失で正規化した挿入損失と回路長の関係を示す。伝搬損失は TE, TM 偏光に対してそれぞれ 0.021 dB/cm と 0.018 dB/cm で あった。この伝搬損失はInP導波路 4 と比較して1/100であり、 通常の GeO_2 -Si O_2 PLC¹²⁾ と同程度の低損失が実現した。

図4 伝搬損失測定に使用した回路図 Circuit layout for propagation loss measurement.

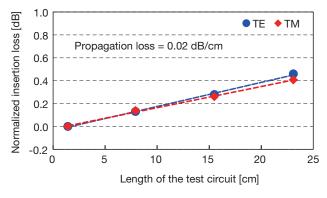
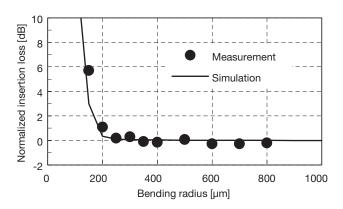
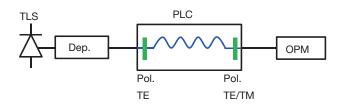



図5 ZrO2-SiO2 PLCの正規化挿入損失と回路長の関係 Relationships between normalized insertion loss of the ZrO₂-SiO₂ PLC and circuit length.

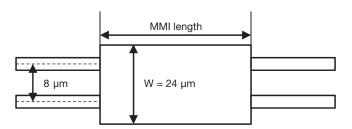
4.2 最小曲げ半径


測定には異なる曲げ半径を有する曲げ導波路と直線導波路を 組み合わせた波状回路を使用した。波状回路の挿入損失と曲げ 導波路の曲げ半径の測定値とシミュレーション値の結果を図6 に示す。回路の挿入損失が増加しはじめる点を最小曲げ半径と すると、試作したZrO₂-SiO₂ PLCでは、最小曲げ半径を 300 μmに設計可能なことが分かった。これは通常のPLCと比 較して1/5以下の曲げ半径が実現可能な事を示しており、大幅 な小型化、高密度集積化が期待できる。

異なる曲げ半径を有する回路の正規化挿入損失と曲げ半 径の関係 Relationships between normalized insertion loss of the circuit and bending radius.

4.3 偏波消光比測定

試作したZrO₂-SiO₂ PLC の偏波消光比 (polarization extinction ratio: PER) の測定系を図7に示す。波長可変光源 (tunable laser source: TLS) を光源として使用した。デポラライザ (depolarizer: Dep.) を通した後、PLC両端に偏光子 (polarizer: Pol.) をセットしたサンプルにTLS光を入射した。PLCからの 出力を光パワーメータ (optical power meter: OPM) で測定し た。PLCの入射端にはTE偏光のPol.をセットし、出射端には TE, TM偏光のPol.をそれぞれセットした。PLCの回路には 曲げ損失測定に使用した物と同様の波状回路を使用した。測定 の結果、PERは29 dBであった。



偏波消光比測定に使用した測定系 Setup for PER measurement.

4.4 MMIカプラ特性

ZrO₂-SiO₂ PLCが機能回路に適用可能かを検証するために MMI (Multi-Mode Interference) カプラを設計, 試作した。使 用したMMIカプラの模式図を図8に示す。MMI幅Wを

24 μm, 入出力部の導波路ピッチを8 μmとした。MMI長と結 合効率 η の関係を図9に、MMI 長と過剰損失の関係を図10 に それぞれ示す。図9と図10にそれぞれプロットで示す測定値に 対し、実線で示すシミュレーションの値はいずれもよく一致し ている。結合効率が0.5となる点において、過剰損失は0.2 dB であった。この結果から、ZrO₂-SiO₂ PLCはMMIカプラを使 用した機能回路に適用できる事を確認した。

試作したMMIカプラの模式図 図8 Schematic diagram of fabricated MMI coupler.

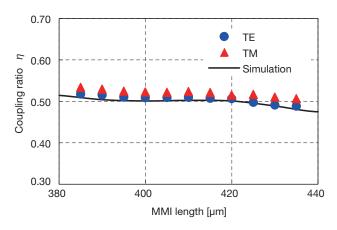


図9 試作したMMIカプラの結合効率 Coupling ratio of fabricated MMI coupler.

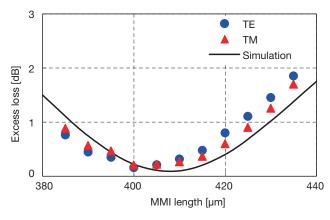


図10 試作したMMIカプラの過剰損失 Excess loss of fabricated MMI coupler.

5. ZrO₂-SiO₂ PLC による超小型コヒーレントミキサ

ZrO₂-SiO₂ PLCを使用し、90°ハイブリッドミキサを設計、 試作した。図11に設計したミキサの構成図を示す。TE, TM

各偏光状態の信号光がSignalポートに入射され, LO(Local oscillator) ポートに入射された局部発振光と上下のミキサでそ れぞれ合波される。ミキサを構成する光カプラは1×2 MMI, 2×2 MMIカプラで構成され、分岐比、結合効率はそれぞれ 50%に設定されている。上下のミキサ部には90°の位相差($\Delta \theta$) を与える遅延線を配置しており、信号光とLO光の干渉によっ て光学的に復調された光が各出力ポートから出力される。本設 計では第4節で示したZrO₂-SiO₂ PLCと同様にΔは5.5%, コア の膜厚は3 µmに設定し、回路の最小曲げ半径は400 µmに設 定した。

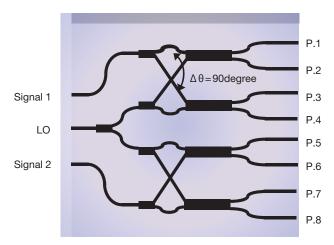


図11 設計したコヒーレントミキサの構成 Schematic diagram of designed coherent mixer.

図12に試作したコヒーレントミキサの写真を示す。ミキサ のチップサイズは4 mm×2 mmであった。この値は従来の チップサイズである $12~ ext{mm} imes 12~ ext{mm}^1)$ と比較して大幅な小型 化に成功している。従来品は偏波ビームスプリッタ (polarization beam splitter: PBS) が集積されいる点で今回試 作したミキサとは構成が異なるが、PBSのサイズを考慮しても ZrO₂-SiO₂ PLCによる顕著な小型化の効果が確認できた。また、 このチップサイズは競合技術であるInP系導波路によるコヒー レントミキサ4)と同程度のサイズである。

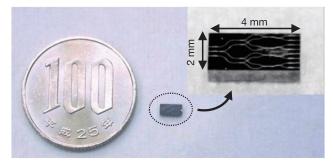


図12 試作したコヒーレントミキサの写真 Picture of fabricated coherent mixer.

コヒーレントミキサから出力される干渉波形の位相特性を評 価するために、コヒーレントミキサにスプリッタと遅延線から なる追加回路を接続した。これによりコヒーレントミキサは

マッハツェンダ干渉計 (Mach-Zehnder interferometer: MZI) となる。MZIの自由スペクトル領域 (free spectral range: FSR) は200 GHzに設定し、波長可変光源を用いて干渉波形を 観測した。ミキサチップの上部アームの出力ポートであるP.1 ~P.4からの出力波形を図13に示す。この結果, 試作したコヒー レントミキサからの出力波形は90°の位相差が実現している事 を確認した。下部アームについても同様の測定を行った。 図14に出力波形から算出した位相誤差を示す。図14から、位 相誤差は波長1530 nmから1580 nmの範囲で±3°以下であっ た。図15に試作したミキサの挿入損失を示す。この挿入損失 にはミキサチップと入出力部のSMFとの結合損失は含まれて いない。入射光はTE偏光とした。シグナルポートの挿入損失 は約6.5 dBであり、C+Lバンド帯で大きな波長依存性がない 事を確認した。挿入損失には90°ハイブリッドミキサでシグナ ル光が分岐される際の原理損失6.0 dBに加え、MMIカプラの 過剰損失0.2 dBが2ヶ所分が含まれており、それ以外の大きな 過剰損失が発生していない事を確認した。

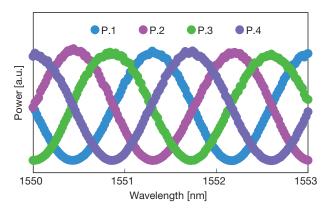


図13 コヒーレントミキサから出力された干渉波形 Interference patterns of coherent mixer.

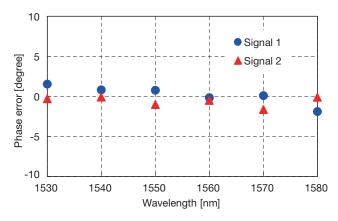
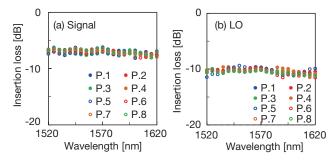



図14 コヒーレントミキサの位相誤差 Phase error of coherent mixer.

図15 (a) シグナルポートと (b) LO ポートの挿入損失 Insertion loss of (a) signal port and (b) LO port.

6. ZrO₂-SiO₂ PLCの低損失接続技術

ZrO₂-SiO₂ PLCはΔが高く、コアのサイズが小さい事から SMFとの接続損失が大きくなる。今回試作したZrO₂-SiO₂ PLC ではSMFとの接続点に導波路幅を広げた簡易的なSSC (Spot-Size Converter) を使用しており、2.7 dB/facetの接続損失で あった。従来のPLCと同程度となる0.5 dB/facet程度の接続損 失を実現するためには、ZrO2-SiO2 PLCから入出力される光の スポットサイズを厚さ方向にも広げる必要がある。そこで, ZrO₂-SiO₂ PLCとSMFの接続に適したSSCの構造を検討した。

6.1 SSC の構造検討

スポットサイズを縦横両方向に拡大する方法として、テーパ SSC¹³⁾は最も効果的にスポットサイズを拡大できるSSCのひと つであるが、テーパSSCをZrO₂-SiO₂ PLCに適用するには下記 の問題がある。

- ・SMFのコア径は10 um程度であるため、テーパSSCでス ポットサイズを拡大する場合, これ以上にコアの膜厚を厚 くする必要がある。
- · ZrO₂-SiO₂ PLCのコアはスパッタ法により成膜しているた め、膜厚が厚くなると成膜時間が長くなる。
- · ZrO₂-SiO₂ガラスは難エッチング材料であり、厚膜化によ りエッチングが困難になる。
- · Δの高いZrO₂-SiO₂ PLCの導波路サイズを大きくした場 合, 高次モードが伝搬する導波路構造となる。

これらの問題点を回避するため、コアにGeO₂-SiO₂ガラスの 使用を検討する必要がある。テーパSSC以外にスポットサイ ズを拡大するための技術として逆テーパSSCが報告されてい る¹⁴⁾。逆テーパSSCではコアを小さくしていく事でスポット サイズも小さくなるが、Δに対してコアが一定のサイズよりも 小さくなると光がコアの外部に広がり、スポットサイズが拡大 する。5.5% の Δ を有する ZrO₂-SiO₂ PLC にこの技術を適用して SMFと同程度までフィールド径を拡大する場合、コアサイズ は0.2 μm程度まで小さくする必要がある。しかしながら、 PLCのコアサイズを0.2 μm まで小さくし、そのサイズを正確 に制御する事は困難であり、SMFとの接続点でのコアサイズ 変動がスポットサイズ変動につながるため、安定して低接続損 失を得る事が困難となる。この問題を解決するためには二重コ ア型SSC¹⁵⁾が有効である。二重コアSSCでは第一コアが逆テー パになっており、第一コアを覆う形で第二コアを形成する事で、 第一コア末端部でのコアサイズの変動を吸収し、第二コア末端

部で安定したスポットサイズを得る事が出来る。ZrO₂-SiO₂ PLCにこの構造を適用する場合、第一コアはZrO₂-SiO₂ガラス で構成し、第二コアはSMFに近いコア径とし、スポットサイ ズを近づけるためにGeO₂SiO₂ガラスを使用する必要がある。 しかしながら、この構成にした場合、第一コアと第二コアの膜 厚が大きく異なるため、第一コアと第二コアの結合部で大きな 損失が発生する。この問題を解決するためには第一コアと第二 コアの結合部でのコアサイズの差を小さくする必要がある。

6.2 CVT-SSCの設計

これらの問題点を解決し、ZrO2-SiO2 PLCとSMFのと接続 損失を低減するのに適したCVT-SSC(Cross Vertical Taper SSC) の構造を図16に示す。CVT-SSCは二重コア型SSCであ り、ZrO2-SiO2 PLCからなる第一コアは高さ方向、幅方向に逆 テーパとなっており、第一コア出射端でスポットサイズを拡大 している。第二コアはGeO₂-SiO₂ PLCで構成され、高さ方向、 幅方向にテーパ形状となる。これにより、第一コアとの接続部 で接続損失を低減しつつ、出射部ではスポットサイズをSMF と同程度まで拡大し、SMFとの接続損失を低減している。

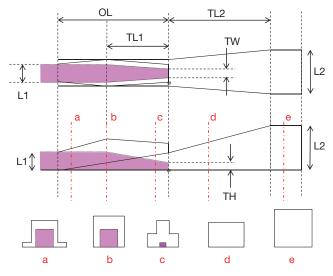


図16 CVT-SSCの構造 Structure of CVT-SSC.

CVT-SSCの設計パラメータを三次元ビーム伝搬法(3 dimension beam propagation method: 3D-BPM) を用いたシ ミュレーションにより最適化するため、まず最適な第二コアの Δ (Δ 2) と第二コアサイズ (L2) を計算した。この結果、 Δ 2を 1.5%, L2を11.5 μmとした。次に第一コアテーパ長 (TL1), 第 二コアテーパ長(TL2)の最適化を行った。この結果, TL1, TL2共に500 μm以上の長さとした場合に低接続損失が得れら る事が分かった。最後に第一コア末端部の幅(TW)と高さ(TH) を変化させて接続損失を計算した。この結果、目標とする接続 損失0.5 dB/facet以下を実現するためにはTWとTHをそれぞ れ0.8 μmと1.0 μm以下にすれば良い事が分かった。以上の結 果から、CVT-SSCの最適な設計パラメータを決定し、試作を 行った。

6.3 CVT-SSCの試作結果

CVT-SSCの作製工程としては,

第一コア成膜→第一コア加工→第一コア Vertical Taper (VT1) 加工→第二成膜 (VT2) →第二コア加工→オーバーク ラッド成膜の順で行った。

VT1は、リソグラフィーでフォトレジスト (PR) に段差をつ け、このPRをエッチングマスクとしてドライエッチングをす ることで、垂直方向のテーパの形状を第一コアに転写させて形 成した。PR工程では、VT1を作製する部分に低い露光量で露 光することでPRを薄くする技術を応用した。露光時にショッ トの位置をずらしながら繰り返し露光する事で、多重露光する 回数を変化させ、現像後のPR厚に段差をつけた。

VT2は、第二コア成膜時にシャドウマスクを用いることに よって作製した。斜面の形状はシャドウマスクと基板間の距離 によって制御した。

表2にCVT-SSCの設計値と試作結果を、図17にCVT-SSC を用いてZrO2-SiO2 PLCとSMFを接続した際の接続損失を示 す。この結果、CVT-SSCを用いる事で、波長1550 nm におけ る接続損失が0.2 dB/facetまで低減した。また、Cバンド全域 において0.31 dB/facet以下の接続損失を実現した。

CVT-SSCの設計値と試作結果 表2 Design and measured parameters of CVT-SSC.

Parameter	Design	Measured
TL1	500 μm	441 μm
TL2	1000 μm	1067 μm
TW	0.5 µm	0.10 μm
TH	0.1 μm	0.13 μm

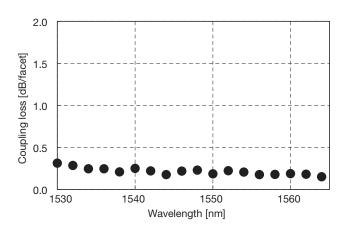


図17 CVT-SSCを用いたZrO2-SiO2 PLCとSMFの接続損失 Coupling loss between ZrO2-SiO2 PLC and SMF using CVT-SSC.

7. おわりに

SiO₂ガラスに添加するドーパントをGeO₂からZrO₂に変更 する事で、従来のPLCを大幅に上回る5.5%の△を有する超高 Δ PLCを実現した。製造工程を最適化する事で、ZrO₂-SiO₂ PLCの伝搬損失は従来のPLCと同程度となる0.02 dB/cmに低 減した。ZrO2-SiO2 PLCを用いて超小型のコヒーレントミキサ を設計,試作し、4 mm×2 mmのチップサイズを実現した。 さらに、5.5%のΔを有するZrO₂-SiO₂ PLCとSMFとの接続に おいて、構造を最適化したCVT-SSCにより、接続損失をCバ ンド全域で0.31 dB/facetに低減する事に成功した。

以上の結果から、小型化、低コスト化、高密度集積化が求め られる次世代の導波路型デバイスに対して、ZrO2-SiO2 PLCは 有望な技術である事を示した。

参考文献

- 1) 井上崇, 川島洋志, 松原礼高, 奈良一孝, 「石英系平面光導波 路を用いたPBS集積コヒーレントミキサの開発」、古河電工時 報, 第127号, pp. 11-16, 平成23年2月.
- 2) N. Matsubara, T. Inoue, and K. Nara, "Highly Polarization Maintaining Circuit-Based Dual PBS-Integrated Coherent Mixer with < 1degree Polarization Axis Rotation," in Proc. ECOC2012, paper We.3.E.5 (2012).
- 3) Y. Nasu, K. Watanabe, M. Itoh, H. Yamazaki, S. Kamei, R. Kasahara, I. Ogawa, A. Kaneko, and Y. Inoue, "Ultrasmall 100 GHz 40-Channel VMUX/DEMUX Based on Single-Chip 2.5%- Δ PLC," J. Lightwave Technol. vol. 27, no. 12, pp. 2087-2094, June 2009.
- 4) H. Yagi, N. Inoue, Y.Onishi, R.Masuyama, T.Katsuyama, T. Kikuchi, Y. Yoneda, and H. Shoji, "High-Efficient InP-Based Balanced Photodiodes Integrated with 90° Hybrid MMI for Compact 100 Gb/s Coherent Receiver," in Proc. OFC2013, paperOW3J.5 (2013).
- 5) U. Fisher, T. Zinke, J. R. Kropp, F. Amdt, and K. Petermann, "0.1 dB/cm waveguide losses in single-mode SOI rib waveguides," IEEE Photon. Technol. Lett., vol. 8, no. 5, pp. 647-648, May 1996.
- 6) Y. Nasu, K. Watanabe, M. Itoh, H. Yamazaki, S. Kamei, R. Kasahara, I.Ogawa, A. Kaneko, and Y. Inoue, "Ultrasmall 100 GHz 40-ChannelVMUX/DEMUX Based on Single-Chip 2.5%-Δ PLC," J. Lightwave Technol. vol. 27, no. 12, pp. 2087-2094, June 2009.

- 7) Jian-Jun He, Lamontagne B, Delage A, Erickson L, Davies M, and Koteles E.S, "Monolithic integrated wavelength demultiplexer based on a waveguide Rowland circle grating in InGaAsP/ lnP," J. Lightwave Technol. vol. 16, no. 4, pp. 631-638, Apr. 1998.
- 8) Samad M. Edlou, Ali Smajkiewicz, and Ghanim A. Al-Jumaily, "Optical properties and environmental stability of oxide coatings deposited by reactive sputtering," Appl. Opt., vol. 32, no. 28, pp. 5601-5605, Oct. 1993.
- 9) Fachun Lai, Ming Li, Kang Chen, Haiqian Wang, Yizhou Song, and Yousong Jiang, "Substrate temperature effect on the refractive index and a two-step film method to detect small inhomogeneities in optical films," Appl. Opt., vol. 44, no. 29, pp. 6181-6185, Oct. 2005.
- 10) "Zirconium and Hafnium" Mineral Commodity Summaries (US Geological Survey), pp.192-193. Jan. 2008.
- 11) David R. Lide, CRC Handbook of Chemistry and Physics 79th Edition, CRC Press, 1998.
- 12) Y. Hida, Y. Hibino, H. Okazaki and Y. Ohmori, " 10 m long silica-basedwaveguide with a loss of 1.7 dB/m," in Proc. IPR1995, paper IThC6-1 (1995).
- 13) M. Galarza, K. De Mesel, S. Verstuyft, C. Aramburu, I. Moerman, P. VanDaele, R. Baets, and M. Lopez-Amo, "1.55-µm InP-InGaAsPFabry-Perot lasers with integrated spot size converters using antiresonantreflecting optical waveguides," Photon, Technol. Lett., vol. 14, no. 8, pp.1043-1045, Aug. 2002.
- 14) T. Mizuno, M. Ito, T. Saida, T. Shibata, and Y. Hibino, "Optical spot sizeconverter using narrow laterally tapered waveguide for planar lightwavecircuits," J. Lightwave Technol. vol. 22, no. 3, pp. 833-839, Mar. 2004.
- 15) M. Tokushima, A. Kamei, and T. Horikawa, "Dual-Tapered 10um-Spot-Size Converter with Double Core for Coupling Polarization-Independent Silicon Rib Waveguides to Single-Mode Optical Fibers," Appl. Phys. Expr. 5, 022202, 2012.