高出力 AIGaIn As/In P 広帯域波長可変レーザの開発

High Power AlGaInAs/InP Widely Wavelength Tunable Laser

岩井則広*1 Norihiro Iwai

若葉昌布*1 Masaki Wakaba

清田和明*3 Kazuaki Kivota

黒部立郎*1 Tatsuro Kurobe

小林 剛*4 Go Kobayashi

木本竜也*3 Tatsuya Kimoto

鍛治栄作*2 Eisaku Kaii

小早川将子*1 Masako Kobayakawa

向原智一*3 Toshikazu Mukaihara 横内則之*1 Noriyuki Yokouchi

粕川秋彦*1 Akihiko Kasukawa

〈概要〉

近年,光通信に用いられる光部品には低消費電力化が求められている。波長の精密制御のために温 調部品を用いる信号光源モジュールにおいては,レーザチップの使用温度範囲を従来に比べて上昇さ せるセミクールド動作は,低消費電力のために有用である。この場合レーザチップは高温で優れた特 性を示すことが要求されるため、高温動作に有利なAIGaInAs系材料を信号光源の活性層に用いること は低消費電力化において有望な技術である。一方,光集積素子(PIC: Photonic Integrated Circuit)は、 次世代の光通信システムにおいて,小型かつ低消費電力を実現するためのキーテクノロジーである。 今回我々は,高機能PICの実現に向け,1550 nm帯 AlGalnAs埋込へテロ型 (BH: Burred Hetero) レー ザの開発を行い、更に AIGaInAs/InP系では初めてとなる、12チャネル DFB (Distributed feedback) レー ザアレイと半導体光増幅器 (SOA) を集積した1550 nm帯波長可変レーザを作製したので報告する。

1. はじめに

近年、光通信に用いられる光部品には低消費電力化が求めら れている。波長の精密制御のために温調部品を用いる信号光源 モジュールにおいては、レーザチップの使用温度範囲を従来に 比べて上昇させるセミクールド動作は、低消費電力のために有 用である。この場合レーザチップは高温で優れた特性を示すこ とが要求されるため、高温動作に有利な AlGaIn As 系材料を信 号光源の活性層に用いることは低消費電力化において有望な技 術となる。一方、PICは、次世代の光通信システムにおいて、 小型かつ低消費電力を実現するためのキーテクノロジーであ る。これまでに、単体素子においては低消費電力かつ高速変調 光源として、AlGaInAs/InP系のBHレーザが報告されてい る1)。

しかし、集積素子に関してはGaInAsP/InP系材料の報告は 多くあるものの,AlGaInAs/InP 系材料のBHレーザを用いた 光集積素子の報告例はない。これは、信頼性に影響を及ぼすと 考えられる再成長埋め込み界面のコントロールが困難なためで ある。

今回我々は、高機能光集積素子の実現に向け、単体の1550 nm帯 AlGaInAs量子井戸 BH レーザの開発を行い、AlGaInAs/ InP系材料で初めて12チャネルDFBレーザアレイと半導体光 増幅器 (SOA: Semiconductor Optical Amplifier) を集積した 1550 nm帯広帯域波長可変レーザを作製したので報告する。

1550 nm帯AlGaInAs/InP BHレーザ

2.1 素子構造及び静特性

AlGaInAs系材料はGaInAsP系材料に比較して、伝導帯のバ ンドオフセットが大きいため、電子のオーバーフローが抑制で きることから, 高温度領域での特性向上が期待される。そこで, 光集積素子を作製する前に、まず単体の1550 nm帯 AlGaInAs /InP 量子井戸 BHレーザの作製を行い、その特性を評価し効 果の確認を行った。今回作製した素子の構造は、活性層が AlGaInAs圧縮歪み量子井戸層で構成され、メサストライプ(活 性層含む)をp型とn型のInP層で埋め込んだ、通常のBH構造 である。結晶成長は全てMOCVD(Metal Organic Chemical Vapor Deposition)で行った。また,評価に用いた素子は,共 振器長が300 µmで, 両端面は劈開のファブリペロー (FP) レー ぜである。

今回作製した素子の電流対光出力(L-I)特性を図1に示す。 動作温度は、それぞれ25,45,65,85℃である。この結果、しき い値電流は、25℃で7.9 mA、85℃で20 mAが得られ、25℃で のしきい値電流密度は、約1.5 kA/cm²となり、同一設計(光閉

^{*1} 研究開発本部 コア技術融合研究所 レーザ・オプティクスチーム

^{*2} 研究開発本部 先端技術研究所 解析技術センター

^{*3} 研究開発本部 情報通信・エネルギー研究所 フォトニックデバイス

^{*4} ファイテル製品事業部門 半導体デバイス部

じ込め係数など) のGaInAsP/InP系BHレーザと同等の値が得 られた。これはすなわち、良好な再成長界面が得られているも のと考えられる。

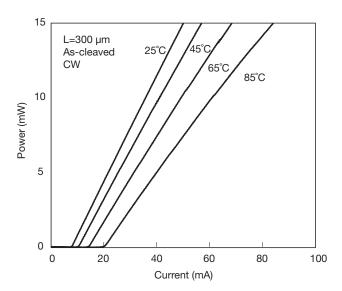


図 1 1550 nm 帯 AlGaInAs/InP BH レーザの L-I 特性 L-I characteristics of the 1550 nm AlGaInAs/InP BH laser

また、しきい値電流及びスロープ効率の温度依存性を図2、 図3にそれぞれ示す。比較のために量子井戸数や光閉じ込め係 数などをほぼ同じ設計で作製した、GaInAsP/InP系BHレーザ の結果も合わせて示す。この結果、特性温度 (T_0) は、 AlGaInAs系BHレーザで63 K, GaInAsP系BHレーザで50 K となり、AlGaInAs系材料の方が良好な結果が得られた。また、 スロープ効率の悪化も25℃から85℃の温度範囲で、AlGaInAs 系BHレーザで-17%, GaInAsP系BHレーザで-31%となり, AlGaInAs系材料の方が良好な結果であった。これらの結果か ら、AlGaInAs系材料を用いることによる温度特性の改善を確 認することができた。

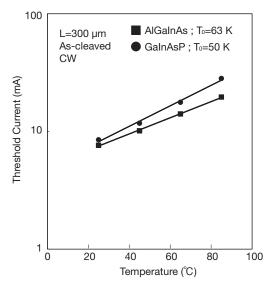


図2 しきい値電流の温度依存性 Temperature dependence of the threshold current.

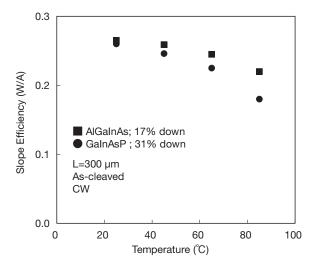


図3 スロープ効率の温度依存性 Temperature dependence of the slope efficiency.

2.2 信頼性試験結果

一般的に、Alを含む材料は、空気中の酸素や水分などによ り容易に酸化されやすく、再成長界面のコントロールが難しい とされている。今回のようなBHレーザの場合、AlGaInAs系 材料からなる活性層をエッチングによりメサ形状に加工してい るため、AlGaInAs活性層の側面が大気中に暴露されることで、 その後の埋め込み成長時に発生する再成長界面の不具合による 信頼性への影響が懸念される。

今回我々は、メサ埋め込み成長前のメサトリートメントを最 適化することで、再成長界面のコントロールを図った。図4に、 今回作製した AlGaIn As/In P系BH レーザの APC (Auto Power Control mode) 試験の結果を示す。試験に用いた素子は、共振 器長が300 µmで、両端面は劈開のファブリペロー (FP) レー ザである。試験の条件は、環境温度85℃で、光出力20 mWで ある。

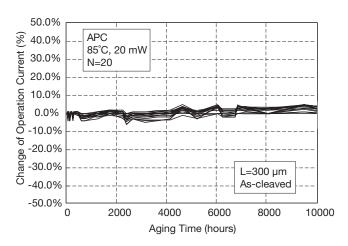



図4 信頼性試験結果 Result of the reliability test.

この結果, 10,000 時間経過後も駆動電流の顕著な変化はみら れていない。駆動電流の上昇率はおよそ5%以下で、GaInAsP/ InP系BHレーザと同等の結果が得られている。また図5に、

2,500時間経過後のサンプルを平面TEM (Transmission Electron Microscope) にて観察を行った結果を示す。今回観察 を行った、メサストライプ方向約100 μmの範囲において、活 性層内部やメサ側面などに転位は観察されなかった。すなわち、 当初懸念された再成長界面の信頼性への影響を抑えることがで きたものと考えている。

平面TEM写真 図5 Plan view TEM image.

3. 1550 nm 帯 AlGaInAs/InP BH 波長可変レーザ

3.1 低消費電力化に向けたAIGaInAs系材料を 用いるメリット

当社では、GaInAsP/InP系材料を用いた1550 nm帯の広帯 域波長可変レーザモジュールを商品化している。キーパーツで ある波長可変光源は、12チャンネルのDFBレーザアレイ、曲 げ導波路, 多モード光干渉 (MMI: Multi-Mode Interference) カプラ,及び半導体光増幅器(SOA)で構成され、熱による波 長可変で1チャンネルあたり約4 nm. チャネルを切り替える ことでトータル40 nm以上の波長可変範囲を実現している2)。 この場合、波長可変に必要な温度の変化範囲は約40℃となる。

このように熱により波長を可変させる構成においては、温調 機 (TEC: Thermoelectric Cooler) により、DFB レーザの温度 をコントロールしており、レーザモジュールとしての消費電力 は、チップの消費電力に加え、TECの消費電力が加味される ことになる。図6に、レーザモジュールのトータルの消費電力 と環境温度及びレーザチップ温度の関係イメージを示す。外部 環境温度が低温の場合には、TECによりチップ温度を上昇さ せるため、チップの設定動作温度の上昇とともにトータルの消 費電力は増加する。一方、外部環境温度が高温の場合には、 TECによりチップ温度を低下させるためチップの設定動作温

度の低下とともにトータルの消費電力が増加する。このように 外部環境温度によりモジュールトータルの消費電力はトレード オフの関係となるが、実際はチップの自己発熱による温度上昇 の影響で、外部環境温度が高くチップの設定動作温度が低い方 がモジュールトータルの消費電力は大きくなる。当社の現行製 品の例では、チップの設定動作温度は15~55℃の範囲で制御 している。これは、GaInAsP系材料ではチップの動作温度の 上昇にともないレーザ特性の劣化が大きいためである。すなわ ち、ここで高温特性に優れる AlGaInAs 系材料を用い、チップ の設定動作範囲を30~70℃と高温側に設計することで、モ ジュールトータルの消費電力を低減することが可能である。

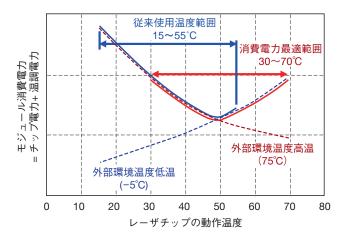
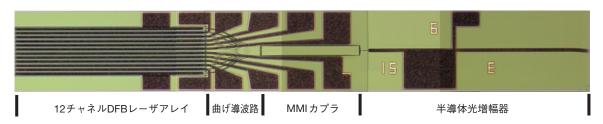
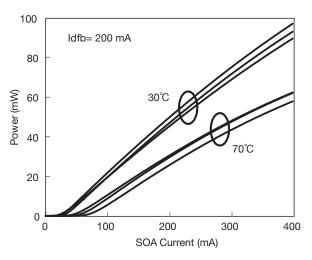


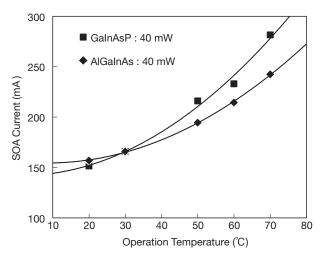
図6 レーザモジュールの消費電力のイメージ Power consumption of the laser module.

3.2 1550 nm帯 AlGaInAs/InP BH波長可変レーザの構造及 び特性

AlGaInAs/InP系BHレーザの光集積素子への応用として、波 長可変レーザの作製を行った。今回作製した波長可変レーザ素 子の写真を図7に示す。素子構造は、AlGaInAs-MQW (Multiple Quantum Well) BHからなる12チャンネルDFBレーザアレイ, 曲り導波路, 多モード光干渉 (MMI) カプラ, および AlGaIn As-MQW BHからなるSOAで構成されている^{3),4)。}

素子サイズは500 μm×3600 μmであり、DFBレーザの長さ は1200 μm, SOAの長さは1400 μmである。端面は曲げ導波 路と無反射コーティングを施して、端面からの反射を抑制して いる。また、DFBレーザそれぞれのグレーティングピッチを 調整し,温度制御により36 nm以上の広波長域をカバーできる ように設計した。


図7 1550 nm帯 AlGaInAs/InP BH波長可変レーザ素子の写真 Photograph of a 1550 nm AlGaInAs/InP wavelength tunable laser.

作製した波長可変レーザは、DFB レーザを定電流で駆動し、 SOA 電流で光出力を制御している。波長可変のための温度制 御は低消費電力化を想定して30~70℃とした。波長可変レー ザの電流対光出力特性を図8に示す。ここでは、各温度に対し て12 チャネルのDFB レーザの代表的な3素子(短波長,中波 長および長波長)の特性を示している。集積素子中の全ての DFB レーザにおいて、30℃で90 mW以上、70℃で50 mW以 上の光出力が得られた^{5),6)。}

波長可変レーザの電流対光出力 (L-I) 特性 L-I characteristics of the wavelength tunable laser.

また、図9に、SOA動作電流の温度依存性の結果を示す。 DFB動作電流は200 mA一定で、光出力を40 mW一定となる ようにSOA動作電流を制御している。比較のためにGaInAsP 系波長可変レーザの結果も合わせて示す。この結果, SOA動 作電流は、20~30℃の低温域では両者に差はみられないもの の,動作温度30~70℃の範囲においてAlGaInAs系材料の方 が低減できていることが確認できた。特に動作温度70℃にお いては14%ものSOA動作電流低減が確認できた。

SOA動作電流の温度依存性 Temperature dependence of the SOA operation current.

図10 に、DFB電流 200 mA、動作温度 70℃ における出力飽 和特性を示す。比較のために、GaInAsP系波長可変レーザの 結果も合わせて示す。この結果, GaInAsP系波長可変レーザ では、飽和電流及び飽和出力がそれぞれ、700 mA, 75 mW に 対して、AlGaInAs系波長可変レーザでは、750 mAにおいて 90 mWと優れた値が得られた $^{5)}$ 。これは、DFBアレイ集積型 の波長可変レーザとしては、これまでの報告で最も高い光出力 であるとともに、集積型素子においても AlGaInAs 系材料の高 温度・高電流注入における優れた特性を実証することができた。

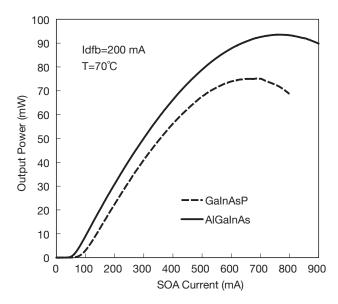


図10 70℃における電流対光出力特性の比較 Comparison of the L-I characteristics at 70°C.

次に、信号光源として重要な項目となる波長特性について説 明する。波長可変レーザの発振スペクトルを図11に示す。サ イドモード抑圧比(SMSR: Side mode suppression ratio)は, およそ40 nmの広い波長域で45 dB以上と高い値が得られた。 また、代表的な3素子のスペクトル線幅のDFB電流依存性を 図12に示す。線幅は、SOA電流を150 mA一定、動作温度は 30℃で,自己遅延ヘテロダイン法にて測定を行った。この結果, DFB電流200 mA以上にて全ての波長帯において、300 kHz以 下のスペクトル線幅が得られた。これらの値はGaInAsP系波 長可変レーザの特性と比較して同等の結果が得られており, AlGaInAs系材料を用いることによる波長特性への悪影響がな いことを確認できた。

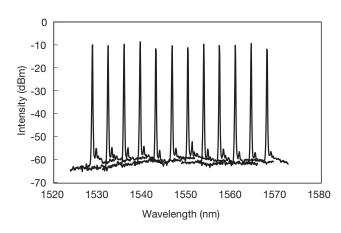


図11 波長可変レーザの発振スペクトル Lasing spectrum of the wavelength tunable laser.

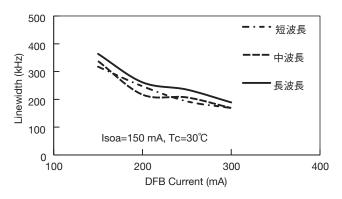


図12 スペクトル線幅のDFB電流依存性 Characteristics of the spectrum line width.

3.3 1550 nm帯AlGaInAs/InP BH波長可変レーザモジュー ルの特性

より実使用に近い条件での光出力と消費電力低減の効果を確 認するために、バタフライ型の簡易モジュールを作製し、今回 開発した AlGaInAs/InP BH波長可変レーザの評価を行った。

図13に、今回作製した波長可変レーザモジュールの代表的 な3波長(短波長,中波長および長波長)の光出力特性を示す。 DFBの動作電流は200 mA一定とし、LD温度を30,50,70℃ でファイバ端光出力の測定を行った。この結果、ファイバ結合 出力は全ての波長のSOA電流1000 mAにおいて、30℃で130 mW, 50℃で100 mW, そして70℃においても80 mW以上の 出力が得られた。前項の素子評価での結果と比較して、飽和電 流が高いのは、モジュールに組み込むことで、素子の自己発熱 の放熱性が改善されているためである。

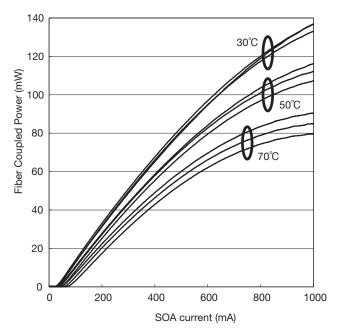


図13 バタフライ型波長可変レーザモジュールの光出力特性 L-I characteristics of the tunable laser module.

また、図14にTEC消費電力とSOA動作電流のLD動作温度 依存性の結果を示す。モジュールの動作条件は、光出力が 40 mW, ケース温度が80℃である。この結果, LD動作温度の 上昇とともにモジュールのTEC消費電力が低減していくこと がわかる。これはLD動作温度の上昇にともない、一定出力を 得るためにSOAの動作電流が上昇し、その自己発熱により TECの出力が抑制されているためである。また、TEC消費電 力はLD動作温度15℃で3W,30℃以上では1.7W以下となり, LDの動作温度を高温側にシフトさせることで、TECの消費電 力を約半分と大幅に削減できることがわかった。これらの結果 から、AlGaInAs/InP系材料は光集積素子の低消費電力化に有 望な技術であると言える。

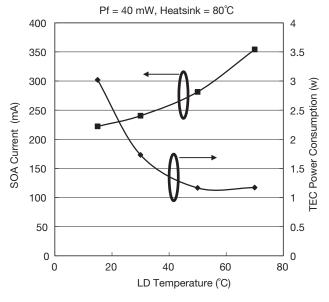


図14 TEC消費電力及びSOA動作電流の動作温度依存性 Operation temperature dependent of TEC power consumption and SOA current.

4. おわりに

高機能光集積素子の実現のため、1550 nm帯 AlGaInAs/InP 系材料を用いたBHレーザの開発を行った。まず単体FPレー ザにおいて, 初期特性及び信頼性の確認を行い, その結果, GaInAsP/InP系材料に比べて温度特性が良好であること、ま た, 信頼性においてはGaInAsP/InP系材料と同等であること を確認した。次に、これらの技術を用いた光集積素子への応用 として、AlGaInAs/InP系材料で初めて12チャネルDFBレー ザアレイとSOAを集積した1550 nm帯波長可変レーザを作製 した。その結果, 12チャネル全てにおいて, 30℃で90 mW以上, 70℃で50 mW以上の光出力を得ることができた。更に、光出 力飽和特性では、750 mAにおいて90 mWが得られDFBアレ イ集積型の波長可変レーザとしては、これまでの報告で最も高 い光出力を得ることができた。更に、レーザモジュールを作製 し、動作温度を15℃から30℃以上に設定することで、TEC消 費電力約50%程度削減できることが確認できた。

以上の結果から、AlGaInAs/InP系材料を用いたBH構造は、 GaInAsP系材料を用いたBH構造に比べ、高温度及び高電流注 入時の光出力特性に優れていること, また, 光集積素子の一例 として作製した波長可変レーザ及び波長可変レーザモジュール において、高温度、高出力動作及び消費電力が大幅に削減でき ることを実証した。すなわち、AlGaInAs/InP系材料は、高機 能化光集積素子の実現に有望な技術であることが確認できた。

参考文献

- 1) T.Yamamoto, K. Takada, M. Matsuda, S. Okumura, S. Akiyama, and M. Ekawa, "1.55-um-Wavelength AlGaInAs Multiple-Quantum-Well Semi-Insulating Buried-Heterostructure Lasers" Conf. Dig., ISLC 2006, p.p. 15-16.
- 2) T. Mukaihara, T. Kurobe, T. Kimoto, and A. Kasukawa,,; Proc., ECOC 2003, We.4.P.81, pp. 718-719, Sept. 2003.
- 3) N. Iwai, M. Wakaba, M. Kobayakawa, K. Kiyota, T. Kurobe, G. Kobayashi, T. Kimoto, S. Tamura, T. Mukaihara, N. Yokouchi, H. Ishii, and A. Kasukawa, "1550 nm AlGaInAs/InP Widely Tunable BH Laser based on Arrayed DFB" Conf. Dig., ISLC
- 4) 若葉昌布, 岩井則広, 小早川将子, 清田和明, 黒部立郎, 小林剛, 木本竜也, 田村修一, 向原智一, 横内則之, 石井宏辰, 粕川秋彦, "1.55um AlGaInAs埋込構造を有するDFBアレイ集積型波長可 変光源"2012年電子情報通信学会 ソサイエティ大会, C-4-17.
- 5) M. Wakaba, N. Iwai, K. Kiyota, H. Hasegawa, T. Kurobe, G. Kobayashi, E. Kaji, M Kobayakawa, T. Kimoto, N. Yokouchi, and A. Kasukawa, "High Power Operation at High Temperature of AlGaInAs/InP Widely Tunable BH Laser" Conf. Dig., OECC 2013, MK2-4.
- 6) 清田和明, 若葉昌布, 岩井則広, 黒部立郎, 小林剛, 鍛治栄作, 小早川将子,木本 竜也,横内則之,"AlGaInAs系BH構造を有 するDFBアレイ集積型波長可変レーザ"2013年電子情報通信学 会 総合大会 C-4-1.