
1. INTRODUCTION

Optical fiber amplification technology, which had made 
vast progress in Erbium doped fiber amplifiers (EDFAs) 
for communication applications, has recently increased 
dramatically the optical output at the 1.0-μm wavelength 
by means of cladding pumping techniques, in which 
pumping light is guided into the cladding of pumping fiber 
1)~4). In the single-mode fiber lasers, owing to the core and 
clad configuration, any lightwave other than that of core 
guided modes in the employed fiber is difficult to be 
transmitted, so that the output light forms stable trans-
verse modes in accordance with the index profile. This 
constitutes a major advantage when the output power of 
a fiber laser is used in combination with an external wave-
length converter. However, when application to wave-
length conversion is assumed, the wavelength stability, 
linewidth and polarization state of light source must be 
taken into consideration in the design, and this presents 
an important aspect different from using the fundamental 
laser wavelength directly. In this paper, the basic opera-
tion of fiber laser will be presented together with the 
design of a fiber laser with wavelength, linewidth and 
polarization state control for use in wavelength conversion 
application, and output performance up to 50 W of a fiber 
laser. 

2. BASIC CONFIGURATION

Figure 1 shows the cross-section of a cladding mode 
pumping fiber. The mode field diameter of this fiber is 6 
μm for single-mode operation at 1.0-μm wavelength, and 
the silica cladding is coated with a fluorine resin having a 
lower refractive index for guiding the pumping light. 
Figure 2 shows the configuration of the fiber laser studied 
here. The pumping light with a wavelength of 915 nm 
where Yb exhibits a broad absorption peak was 
employed, taking wavelength controllability into account. 
The light output from the pumping semiconductor laser 
chip is coupled to a multi-mode fiber with a core diameter 
of 105 μm and an NA of 0.22, and is subsequently guided 
into the cladding of a Yb-doped fiber. The laser cavity 
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dicular to each other have two different refractive indexes. 
We have realized single polarization lasing by making the 
peak position of the HR on the short-wavelength side 
overlap with that of the OC on the long-wavelength side. 
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Figure 4 Reflection spectrum of FBG written on a polarization 
maintaining fiber.

Figure 5 shows the lasing spectrum of this fiber laser; 
Figure 6 the pumping current vs. optical output and its 
temperature dependence; and Figure 7 the pumping cur-
rent vs. lasing efficiency. While a conversion efficiency 
from pumping light power to laser output power of 60% or 
higher has been obtained including the optical loss pro-
duced by inner optical parts, this rather low efficiency 

consists of a high-reflectivity fiber Bragg grating (HR FBG) 
with a reflectivity higher than 99%, and an output coupler 
FBG (OC FBG) with a reflectivity of around 10%, and 
lases at a wavelength that is determined by the reflected 
lightwaves from the FBGs. An FBG is configured by gen-
erating periodic interference fringes directly on a fiber 
glass, taking advantage of structural defects in silica. 

The center wavelength λB, reflection bandwidth Δλ and 
reflectivity RB of an FBG can be designed as follows.
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2where, n2 is the refractive index of the FBG where the 
index is increased due to UV irradiation, n3 is the refrac-
tive index of fiber core, Λ is the grating writing interval on 
the FBG, η is the confining coefficient in the core, and L is 
the grating writing length. 

Since the grating is written directly on the silica glass of 
a fiber, the FBG shows a thermal wavelength shift as the 
fiber elongates or contracts due to the linear expansion of  
silica glass. In order to obtain high wavelength stability by 
compensating for temperature changes, use of a temper-
ature compensation package shown in Figure 3 is effec-
tive, which can eliminate elongation and contraction of an 
FBG caused by temperature changes. Stabilization tech-
niques for the lasing wavelength of a fiber laser will be 
presented in the next Section. 
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Figure 3 Basic structure of FBG and temperature compensa-
tion package.

3. CHARACTERISTICS OF FIBER LASER 
WITH 6-W OUTPUT 

A fiber laser stabilized in wavelength was fabricated by 
using temperature-compensated FBGs. Figure 4 shows 
the reflection spectrum of an FBG written on a polariza-
tion maintaining fiber, where two reflection peaks 0.3 nm 
apart exist since the two optical axes in the fiber perpen-
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Figure 5 Lasing spectrum at 6-W output.
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Figure 6 Pump current vs. output power characteristics.
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4. FURTHER OUTPUT POWER 
ENHANCEMENT AND LINEWIDTH 
EXPANSION

The output power of a fiber laser can be increased by 
using additional pumping light sources, or even when 
gain saturation is reached, by increasing the length of las-
ing fiber. 

Figure 10 shows an example configuration of a fiber 
laser with high output power by CW operation. To efficiently 
guide the light from multiple pumping semiconductor 
lasers into the cladding of a lasing fiber, a fused-fiber type 
optical component called tapered fiber bundle is used; 
specifically, the 10-W class pumping light sources of 915 
nm in wavelength are each guided from the pumping ports 
counting 36 in total into the cladding of a Yb-doped double 
clad lasing fiber of 40 m in length. In this configuration, the 
cavity consists of an HR FBG having a reflectivity of 99% or 
higher with a center wavelength of 1085 nm--- where the 
gain peak of Yb-doped fiber is located ---and an OC FBG 
having a reflectivity of about 10%. As shown in Figure 11, 
the output power of this laser is 250 W at a total pumping 
power of 366 W, and the conversion efficiency from pump-
ing light is 68%. 
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Figure 10 Configuration of CW fiber laser.
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Figure 11 Output power and efficiency of CW fiber laser.

Since the cavity length of this laser is very long--- as 
long as 40 m ---so that the longitudinal mode spacing, 
which is calculated from the allowed resonating modes 
determined in number by the integral multiple of the 
wavelength, becomes very narrow--- about 0.1 pm. And 
since the amplification bandwidth of the Yb-doped fiber is 

results from the use of a slightly shorter lasing fiber to 
improve the controllability of laser linewidth. 
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Figure 7 Pump current vs. efficiency.

The temperature dependence of the center wavelength 
was, as shown in Figure 8, 7 pm or less for a temperature 
range of 0 ~ 50°C at 6-W output, and the linewidth was 
found as about 35 pm. Such wavelength precision is suit-
able for wavelength conversion applications using second 
harmonic generation (SHG) devices. Figure 9 shows the 
appearance of this fiber laser with 6-W output, accommo-
dated in a compact casing measuring 100 mm x 100 mm 
x 16 mm.
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Figure 8 Temperature dependence of center wavelength.

Figure 9 Appearance of compact single polarization fiber laser.
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have a very narrow linewidth individually, they expand in 
linewidth due to self phase modulation (SPM) as they 
propagate in the glass medium of fiber. Incidentally, the 
lasing peak due to Raman scattering can also be 
observed at around 1140 nm. 

5. 50-W OUTPUT POLARIZATION 
MAINTAINING FIBER LASER

Although the output power of fiber lasers can be increased 
by using changed laser configurations as mentioned 
before, their linewidth also grows as the output power 
increases due to wavelength expansion caused by SPM. 
Moreover, their center wavelength tends to shift to the lon-
ger wavelength side due to the fact that the core tempera-
ture of FBGs slightly increases, irrespective of temperature 
compensation using a temperature-compensated pack-
age, as the high-power lasing light passes through the 
FBG. Since the linewidth is required to be controlled 
below 200 pm for high-efficiency wavelength conversion, 
to satisfy this requirement, we have employed a master 
oscillator and power amplifier (MOPA) configuration, in 
which the output from a fiber laser designed to produce a 
relatively low output power is amplified by postpositioned 
fiber amplifiers. As shown in Figure 15, the number of 
postpositioned optical amplifiers is three in total.

Figure 16 plots, against output power, the lasing 

very broad exceeding 100 nm, the lasing spectrum or 
linewidth of this laser is limited by the wavelength band-
width of the cavity. 

Figure 12 shows the reflection spectrum of an FBG 
designed to be equivalent to the one used in this laser, 
indicating that the half bandwidth of wavelength is about 
100 pm.
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Figure 12 Reflection spectrum of an equivalent FBG.

On the other hand, Figures 13 and 14 show the lasing 
spectrum of this laser up to 250-W output. It can be seen 
that the spectrum has expanded more than ten times the 
wavelength bandwidth of the FBG, and that the spectrum 
width expands further as the output power increases. 
Since the longitudinal mode spacing is 0.1 pm as men-
tioned before, about 1000 longitudinal modes are gener-
ated in the bandwidth of the FBG, i.e., 100 pm. It is con-
sidered that since these longitudinal modes originally 
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Figure 13 Output spectra of CW fiber laser.
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Figure 14 Output spectra of CW fiber laser (enlarged view).
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Figure 15 Configuration of 50-W polarization maintaining fiber laser.
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Figure 16 Lasing wavelength and linewidth of the first-stage 
seed laser. 
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Figure 20 Linewidth vs. output power.

6. CONCLUSIONS

By taking advantage of wavelength stabilizing techniques 
for FBG, we have been successful in developing a fiber 
laser that achieves, at a wavelength of 1064 nm, a high-
level of temperature as well as long-term stability in terms 
of linewidth and wavelength. Moreover, using a fiber 
amplifier of MOPA configuration, we have succeeded in 
obtaining a polarization-maintained output power of up to 
50 W at a wavelength of 1083 nm, while controlling its 
linewidth below 200 pm. 

It is known that, when this laser is combined, a 532-nm 
green light can be easily generated, in a postpositioning 
manner with an SHG device based on periodically poled 
lithium niobate (PPLN), and that a conversion efficiency of 
around 30% is usually obtained. 

Since the wavelength of this laser is very stable without 
using a special control means, it is expected that applica-
tions will expand further. Work is now underway to investi-
gate its applications in the 1030 ~ 1180 nm range, which 
takes advantage of the very wide gain bandwidth of Yb at 
1.0 μm, since this range corresponds to the fundamental 
wavelength for the 500 ~ 600 nm range that is difficult to 
be generated directly using semiconductor lasers.
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