SuperPower wire further advances the future commercialization of superconducting fault current limiters (SFCL)
- SuperPower supplies 2G HTS wire for Applied Materials’ SFCL project that includes NYSERDA, Central Hudson and Three-C
- Developing the future of SFCLs and transformers
April 25, 2014 – Schenectady, New York – SuperPower Inc. supplied its second generation (2G) high temperature superconducting (HTS) wire to the Applied Materials, Inc. superconducting fault current limiter (SFCL) system to be installed for on-grid testing at the Knapps Corners substation owned and operated by Central Hudson Gas and Electric Corp. (Central Hudson) in New York. Applied Materials is one of many technology leaders involved in the energy industry who realize the benefits of 2G HTS technology as a viable and necessary part to revitalizing the power grid.
Applied Materials announced on April 15, 2014 that it had completed the assembly of a SFCL system for installation and on‐grid testing at a substation owned and operated by Central Hudson. Other team members include the New York State Energy Research and Development Authority (NYSERDA), Three‐C Electrical Co., as well as Central Hudson and SuperPower. System testing and evaluation is set to commence in May 2014 and will continue for one year. Performance data will be provided to the New York State Public Service Commission.
In today's high voltage transmission network, the introduction of new generating facilities, independent power producers, and network upgrades can result in fault‐current overduty on existing protective equipment. A variety of factors such as lightning, downed power lines, or crossed power lines also cause faults throughout the utility grid. Conventional solutions to fault current overduty problems such as the construction of new substations, splitting existing substation busses or multiple circuit breaker upgrades can be disruptive and very expensive. Other solutions such as current limiting reactors have unwanted side effects and can compromise system stability.
SFCLs using high temperature superconductors offer a solution to controlling fault‐current levels on utility distribution and transmission networks. SFCLs provide enhanced stability and efficiency of the power delivery systems and reduce or eliminate wide‐area blackouts, reduce localized disruptions, and improve recovery time when faults do occur. Unlike reactors or high‐impedance transformers, SFCLs operate with low impedance and are “invisible” components in the electrical system during normal operation. It is only when a fault occurs that the SFCL inserts an impedance into the circuit (triggers the 2G HTS wire into a quench) and limits the fault current from transmitting further down line and causing significant damage to sensitive equipment.
“We are very excited to be working with Applied Materials on the SFCL project. The decline of the U.S. energy infrastructure, as well as that of the world, is out‐pacing our ability to repair or replace the dated technology. Utilizing superconducting technology for energy applications, such as the SFCL, not only addresses the need for replacing the outdated equipment but also allows us to address the ever increasing demand for more power,” noted Mr. Yusie Shirasaka, president and treasurer of SuperPower. Mr. Shirasaka further noted, “superconducting applications have significant benefits over their copper‐based counterparts, including an enhanced capacity and increased efficiency in generation, transmission, distribution and storage of energy. The SFCL is a first‐step in protecting existing grid equipment and for the future introduction of other superconducting devices such as cables, storage, transformers, and the combined SFCL‐transformer, a project currently underway at SuperPower.”
This is not SuperPower’s first involvement with an important and potentially future changing utility project. As reported in September 2013, SuperPower provided the second‐generation high temperature superconducting (2G HTS) wire for the European Union (EU) collaboration program, called Project ECCOFLOW. The ECCOFLOW SFCL was designed, built and tested by a team of fifteen European organizations that include five European utility companies.
Contact us
Mickey Lavicska, Associate Director of Marketing & Sales
SuperPower Inc.
450 Duane Ave., Schenectady, NY 12304 USA
Tel: (518) 346‐1414 ext. 3070
Mobile: (518) 257‐0322
E-mail: mlavicska@superpower-inc.com
About SuperPower
SuperPower Inc. a subsidiary of Furukawa Electric Co., Ltd. (TSE:5801; TYO:5801), was formed in March 2000 to develop and commercialize high temperature superconductor (HTS) technology for applications that benefit from high energy density, high magnetic fields and green attributes, including energy, medical, transportation, research and other sectors. To learn more, visit www.superpower-inc.com